Mechanics- General motion in a straight line.

Click For Summary

Discussion Overview

The discussion revolves around a physics problem involving the motion of a woman on a sledge moving in a straight line across ice, with a given initial velocity and a time-dependent acceleration. Participants are attempting to calculate the distance traveled before coming to rest, comparing their results with a textbook answer.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates the distance traveled as 53.3 m using integration of the velocity function derived from the acceleration.
  • Another participant disagrees with the initial calculation and the textbook answer, proposing a different distance of approximately 26.7 m based on their own integration of the velocity function.
  • Several participants express disagreement with the textbook answer, suggesting it may be incorrect if the acceleration is indeed as stated in the problem.
  • There is a mention of a potential typo in the acceleration value, which could explain discrepancies in the answers.

Areas of Agreement / Disagreement

Participants generally disagree on the correct distance traveled, with multiple competing views presented. The discussion remains unresolved regarding which calculation is correct, and there is no consensus on the accuracy of the textbook answer.

Contextual Notes

There are unresolved issues regarding the assumptions made about the acceleration and its potential typo, which could affect the calculations. The participants' results depend on the interpretation of the acceleration function.

Shah 72
MHB
Messages
274
Reaction score
0
A woman on a sledge moves in a straight line across horizontal ice. Her initial velocity is 2 m/s. Throughout the journey her acceleration is given by a= -0.01t m/s^2, where t is the time from the start in seconds. Find the distance that she travels before coming to rest.
Iam getting the ans 53.3 m
When t= 0s initial velocity= 2m/s
I integrated to get v= -0.01t^2/2+2
I integrated v to get s= -0.01t^3/6 +2t+c
t=0, s=0, c=0
When it comes to rest v= 0
I get t=20s taking the velocity equation.
I substitute in s and got 53.3m
The ans in textbook is 8.43m
 
Physics news on Phys.org
I disagree with both your solution and the text “answer”.

$\Delta x = 2t - \dfrac{0.01t^3}{6} = 40 - \dfrac{80}{6} = \dfrac{80}{3} \approx 26.7$ m

which matches up with the evaluation of the definite integral

$\displaystyle \Delta x = \int_0^{20} 2 - \dfrac{0.01t^2}{2} \, dt$

if the acceleration was $-0.1t \, m/s^2$, then the text solution is correct
 
skeeter said:
I disagree with both your solution and the text “answer”.

$\Delta x = 2t - \dfrac{0.01t^3}{6} = 40 - \dfrac{80}{6} = \dfrac{80}{3} \approx 26.7$ m

which matches up with the evaluation of the definite integral

$\displaystyle \Delta x = \int_0^{20} 2 - \dfrac{0.01t^2}{2} \, dt$

if the acceleration was $-0.1t \, m/s^2$, then the text solution is correct
Sorry that was a typo mistake. I got 26.7 m.
So the textbook ans is wrong.
Thank you so so much!
 
Shah 72 said:
Sorry that was a typo mistake. I got 26.7 m.
So the textbook ans is wrong.
Thank you so so much!

As I stated, the text solution was not incorrect if it was a typo with the acceleration by one decimal place … which is a plausible explanation imo.
 
skeeter said:
I disagree with both your solution and the text “answer”.

$\Delta x = 2t - \dfrac{0.01t^3}{6} = 40 - \dfrac{80}{6} = \dfrac{80}{3} \approx 26.7$ m

which matches up with the evaluation of the definite integral

$\displaystyle \Delta x = \int_0^{20} 2 - \dfrac{0.01t^2}{2} \, dt$

if the acceleration was $-0.1t \, m/s^2$, then the text solution is correct
Yeah I got that. Textbook question has a=- 0.01t m/s^2
So according to this our ans of 26.7m should be right. And as you mentioned if the question had a= -0.1t m/ s^2 then s= 8.43 m.
Thanks a lot!
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 98 ·
4
Replies
98
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
1K