I Melting point of graphite and diamond?

Click For Summary
The discussion focuses on the melting points of graphite and diamond, highlighting significant discrepancies in reported values across various sources. Graphite's melting point is often cited around 3,550°C, while diamond's melting point ranges from approximately 3,000°C to 4,027°C, creating confusion even among AI responses. The melting point of tungsten is consistently reported at about 3,422°C, making it a reliable reference point. The conversation also notes that both graphite and diamond sublimate rather than melt, complicating the definition of their melting points. Overall, the variability in data leads to uncertainty regarding the true melting points of these carbon allotropes.
Warp
Messages
139
Reaction score
15
TL;DR
It's strangely difficult to find these temperatures online. Different sources give wildly different values. What are the actual temperatures?
I was conversing with ChatGPT when I asked which material has the highest melting point, and it answered "tungsten" (giving its melting temperature). It so happened that in the previous question the melting point of graphite had come up, and it was listed as higher than that. When I asked which one of the two has the higher melting point, it insisted that it's tungsten, even though in that very response it listed a higher temperature for graphite. ("Graphite has a melting point of approximately 3,550°C (6,422°F), while tungsten has a melting point of approximately 3,422°C (6,192°F). Tungsten has the higher melting point between the two materials.")

In fact, other similar AIs also give wildly different answers (and most of them incorrect by the numbers).

This seemed to be an AI hallucination, so I googled what the melting point of graphite is, and to my surprise I found wildly different answers from different sources, varying by, like, a thousand degrees.

(Yes, I know that graphite, and diamond, do not melt per se, they sublimate. However, by "melting point" I mean "the temperature at which it stops being a solid.)

Turns out that also the melting point of diamond seems equally vague. Googling for it gives wildly different results:

"Diamond has a very high melting point (almost 4000°C)"
"Thus, we infer that diamond melts at about 9,000 K and between 0.60 and 1.05 TPa along the Hugoniot."
"In case of Diamond, the melting point is 3550 degrees Celsius"
"However, the melting point of diamond is estimated to be around 3,000-3,500°C (5,432-6,332°F)."
"Using carbon's theoretical phase diagram below (from Wikimedia), "liquid diamond" could be achieved at about 10 GPa (99 thousand atmospheres) and 5000 K (4700 °C)."
"Diamond has the highest melting point (3820 degrees Kelvin)"
"The ultimate melting point of the diamond is around 4,027° Celsius (7,280° Fahrenheit)"

No wonder the AIs are confused about it. So am I.

In comparison, the melting point of tungsten seems to be quite universally agreed upon (and likewise all AIs give a very consistent value for it).

What is the melting (well, sublimation) point of graphite and diamond? (I suppose I should add, under normal pressure conditions.)
 
Physics news on Phys.org
Warp said:
Turns out that also the melting point of diamond seems equally vague.
A diamond will burn in the air at about 400°C. That makes melting diamond difficult, as it will often react chemically before it melts.
 
  • Like
Likes Vanadium 50
Graphite, grapheme. diamond and liquid carbon are all phases. At atmospheric pressure, there may not be a direct phase transition from one phase to another. What is the freezing point of steam?
 
Vanadium 50 said:
Graphite, grapheme. diamond and liquid carbon are all phases. At atmospheric pressure, there may not be a direct phase transition from one phase to another. Where is the freezing point of steam?
It doesn't freeze here, but it does in Oymyakon. So is it somewhere near Omsk?
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
47K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
6
Views
1K
  • · Replies 18 ·
Replies
18
Views
6K
  • · Replies 19 ·
Replies
19
Views
12K
Replies
19
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 157 ·
6
Replies
157
Views
20K
  • · Replies 3 ·
Replies
3
Views
2K