Method of dominant balance

  • Context: MHB 
  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Balance Method
Click For Summary
SUMMARY

The method of dominant balance was applied to solve the differential equation $y''-(2+x^2)y=0$ for large values of $x$. The analysis revealed that the first approximation for $w'$ is $w' = x + \frac{1}{2}x^{-1} + \frac{1}{8}x^{-3}$, leading to one solution for $y$. A second solution was derived by taking $a=-1$, resulting in $w' = -x - \frac{3}{2}x^{-1} + \frac{15}{8}x^{-3}$. This confirms the existence of two distinct solutions, aligning with the expectations for such equations.

PREREQUISITES
  • Understanding of differential equations, specifically second-order linear equations.
  • Familiarity with the method of dominant balance in asymptotic analysis.
  • Knowledge of exponential functions and their derivatives.
  • Basic skills in algebraic manipulation and approximation techniques.
NEXT STEPS
  • Study the method of dominant balance in more detail, focusing on its applications in asymptotic analysis.
  • Explore the derivation and implications of solutions to second-order linear differential equations.
  • Learn about the integration of functions to obtain solutions from their derivatives.
  • Investigate the behavior of solutions for large values of independent variables in differential equations.
USEFUL FOR

Mathematicians, physicists, and engineers dealing with differential equations, particularly those interested in asymptotic methods and the analysis of solutions for large variables.

Poirot1
Messages
243
Reaction score
0
solve (first three terms) $y''-(2+x^2)y=0$ using the method of dominant balance (for large x).

I solved this and got 4 different solutions when I think I should be getting 2.
 
Physics news on Phys.org
Poirot said:
solve (first three terms) $y''-(2+x^2)y=0$ using the method of dominant balance (for large x).

I solved this and got 4 different solutions when I think I should be getting 2.
The method here is that you look for a solution of the form $y=e^w$, where $w$ is some function of $x$ that has to be determined. Then $y' = w'e^w$, $y'' = (w'' + w'^2)e^w$, and the equation $y''-(2+x^2)y=0$ becomes $w'' + w'^2 = x^2+2.$

As a first approximation, you try $w' = ax^\alpha$. Then $w'' + w'^2 = a\alpha x^{\alpha-1} + a^2x^{2\alpha}$. We want this to look like $x^2+2$ for large $x$. The dominant term there is clearly $x^2$, and to make this balance with the dominant term in the expression for $w'' + w'^2$, we need to take $\alpha=1$ and $a^2=1$. That gives you two possible answers, one for $a=1$ and one for $a=-1.$

Taking the case $a=1$ (so that $w'=x$), we look for a second term, so that $w'$ is then of the form $w' = x+bx^\beta$ (where $\beta<1$). In that case, $w'' = 1 + b\beta x^{\beta-1}$ and $w'^2 = x^2 +2bx^{\beta+1} + b^2x^{2\beta}.$ Thus $w''+w'^2 = x^2 + 1 +2bx^{\beta+1} + b\beta x^{\beta-1} + b^2x^{2\beta}.$ Comparing this with $x^2+2$, we see that the term $x^2$ already balances. The next thing to look for is the constant term. In the expression for $w''+w'^2$ it is 1, but we want it to be 2. So we need an additional 1, and we can get that by taking $\beta=-1$ and $b=\frac12.$ Thus $w' = x + \frac12x^{-1}.$

In a similar way, for the third term we take $w' = x + \frac12x^{-1} +cx^{\gamma}$ (where $\gamma<-1$). Then $w'' = 1 -\frac12x^{-2} +c\gamma x^{\gamma-1}$ and $w'^2 = x^2 +1 + \frac14x^{-2} + 2cx^{\gamma+1} + cx^{\gamma-1} + c^2x^{2\gamma}.$ Thus $$w''+w'^2 = x^2 + 2 -\tfrac14x^{-2} + 2cx^{\gamma+1} + c(1+\gamma)x^{\gamma-1} + c^2x^{2\gamma}.$$ This time, we already have the $x^2+2$ that we want, but we need to eliminate the unwanted term $-\tfrac14x^{-2}$. To do that, take $\gamma=-3$ and $c=\frac18$, so that the term $2cx^{\gamma+1}$ becomes $\tfrac14x^{-2}$ which balances out the unwanted term.

Thus the three-term approximation for $w'$ is $w' = x+\frac12x^{-1}+\frac18x^{-3}$. (You then need to integrate this to get $w$ and then exponentiate it to get $y$.) Notice that the only stage where there was any choice in the parameters was in the first step, where we took $a=1$ rather than $a=-1$.

Taking $a=-1$ and applying the same method, I get the second solution as $w' = -x -\frac32x^{-1} +\frac{15}8x^{-3}$ (but I haven't checked that and I don't guarantee its accuracy). So there are indeed two solutions, as there should be.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
859
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K