B Mick's Spooky Time Dilation Puzzle

AtoMick-u235
Messages
12
Reaction score
1
Hmmm, , Does gravitational time dilation (speed up) cancel out earth orbit time dilation (slow down) for astronauts, , , it must do, to a certain extent

Hmmm, , ,Mick's been thinking = the present is a continuous but fleeting moment, that allows the future to flow into the past, , ,so does the past and future push and pull the present ?, , , SPOOKY !!
 
Last edited:
Physics news on Phys.org
AtoMick-u235 said:
Does gravitational time dilation (speed up) cancel out earth orbit time dilation (slow down) for astronauts, , ,
It depends on what altitude the astronauts are orbiting at. For low Earth orbit (such as the ISS), the slow-down due to orbital speed is greater than the speed-up due to increased altitude, so clocks on the ISS run slower than clocks on Earth.

At the altitude of the GPS satellites, however (orbital radius of 4.2 Earth radii), the opposite is true: the altitude effect outweighs the orbital speed effect so the natural rate of clocks on the GPS satellites is faster than that of Earth clocks (and so a frequency correction has to be applied to the GPS satellite clocks so that the output "tick rate" is the same as that of Earth clocks).

The break point between these two regimes is at an orbital radius of 1.5 Earth radii, or an altitude above Earth's surface of 0.5 Earth radii, or about 3200 km.
 
  • Like
Likes AtoMick-u235, hutchphd, vanhees71 and 4 others
No, GPS satellites need to account for -7 microseconds/day due to SR (motion) and +45 microseconds/day due to GR (gravity).

SO ... if an astronaut is in geosynchronous orbit, the answer is obviously no. You could probably find the one exact orbital path for which the difference is zero, but in general ... no.

EDIT: I see Peter beat me to it.
 
  • Like
Likes vanhees71 and Dale
AtoMick-u235 said:
Mick's been thinking = the present is a continuous but fleeting moment, that allows the future to flow into the past, , ,so does the past and future push and pull the present ?, , , SPOOKY !!
Please review the PF rules on personal speculation. Your initial question was fine by itself.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
5
Views
2K
Replies
58
Views
4K
Replies
21
Views
2K
Replies
36
Views
4K
Replies
58
Views
5K
Replies
8
Views
2K
Replies
10
Views
6K
Back
Top