Feynstein100
- 181
- 17
But a depends on eccentricity. It's the distance from the focus to the centre of the ellipse. The more eccentric the ellipse, the farther away the centre is from the focus and thus the greater the semimajor axis, right?vanhees71 said:But as correctly stated above, the total energy depends only on ##a##, no matter how large the excentricity ##\epsilon## with ##0 \leq \epsilon<1## is. Also the period doesn't depend on ##\epsilon##, thanks to Kepler's 3rd Law
$$\frac{T^2}{a^3} = \frac{4 \pi^2}{G M} \simeq \frac{4 \pi^2}{G m_{\text{Sun}}}=\text{const}.$$
Ah okay as long as the endpoints/foci don't change, the eccentricity doesn't affect a. But that's not the image I had in mind. I meant stretching the ellipse outward until a is as large as we need.