Mie/Rayleigh Phase Function Differences

  • Context: Graduate 
  • Thread starter Thread starter Steleo
  • Start date Start date
  • Tags Tags
    Function Phase
Click For Summary
SUMMARY

The discussion centers on the differences between Mie and Rayleigh scattering, particularly in the context of atmospheric scattering. Rayleigh scattering occurs when particles are smaller than the wavelength of light, leading to isotropic scattering, while Mie scattering applies to larger particles, resulting in increased forward scattering and decreased scattering in other directions. The conversation highlights the importance of multipole expansions and higher-order harmonics in understanding the scattering patterns as particle size increases. Key features of Mie scattering include interference effects and polarization phenomena that are not present in Rayleigh scattering.

PREREQUISITES
  • Understanding of Mie scattering and Rayleigh scattering principles
  • Familiarity with multipole expansion in electromagnetic theory
  • Knowledge of spherical harmonics and their role in scattering
  • Basic concepts of light polarization and interference
NEXT STEPS
  • Study the mathematical derivation of Mie scattering solutions
  • Explore the role of higher-order harmonics in scattering phenomena
  • Investigate the physical implications of polarization effects in scattering
  • Learn about applications of Mie and Rayleigh scattering in atmospheric science
USEFUL FOR

Researchers in atmospheric physics, optical engineers, and students studying light scattering phenomena will benefit from this discussion, particularly those interested in the implications of particle size on scattering behavior.

Steleo
Messages
13
Reaction score
0
Good Day,

Understanding that Rayleigh scattering is a limiting case of Mie scattering why physically do we see such a change in phase function (i.e. what's happening in between)? I am thinking that we are seeing more destructive interference in the side/back directions and more constructive in the forward direction, but it's not completely clear to me why physically this is happening.

Thanks

Max
 
Science news on Phys.org
Can you be a little more specific about 'phase function'? Mie scattering has a lot of interesting features, including infinities (caustics/rainbows) and scattering efficiencies > 1.
 
Andy,

I guess I'm more interested in the difference in the gross features between the Rayleigh and Mie "scattering patterns", especially in the regime of atmospheric scattering. I guess what it boils down to is why should increasing particle size as in Mie scattering give the increase in forward scattering and decrease in other directions as compared to Rayleigh.

Cheers

Max
 
If the scattering particles are smaller than the wavelength of the light, it makes sense to expand the electric fields of the incident and scattered light into a multipole series. The electric field at the surface of the particle is of the order of r^(-l) where r is the radius of the particle and l is the angular momentum of the spherical harmonic involved. For very small particles only the s-type harmonic with l=0 is relevant (dipole approximation) which leads to isotropic scattering (Rayleigh) for larger diameters, more and more harmonics have to be taken into account and the scattering becomes more anisotropic till the classical regime is reached.
 
Thanks DrDru I appreciate your response.

I guess part of my question is why are those other harmonics important as the particle size increases. Is there more 'room' for the higher order moments to develop within the sphere?

I was really just after some sort of "physical intuition" as to why the scattering pattern should change with particle size in the way it does but I am suspecting its just the complex interaction between the higher order moments that are induced that gives the resulting patterns?

Regards,

Max
 
I remember the original article by Mie to be very informative (however it is in German).
Alternatively I think most intuition can be gained from an explicity calculation, e.g. for spherical metallic particles, which is the easiest situation.
 
Steleo said:
Andy,

I guess I'm more interested in the difference in the gross features between the Rayleigh and Mie "scattering patterns", especially in the regime of atmospheric scattering. I guess what it boils down to is why should increasing particle size as in Mie scattering give the increase in forward scattering and decrease in other directions as compared to Rayleigh.

Cheers

Max

Rayleigh (or Rayleigh-Gans) scattering is a limit of Mie scattering: when the product of the wavenumber and particle size is much less than 1 (ka<<1). For atmospheric scattering (as opposed to particulate scattering), this is a good approximation.

If you start with the multipole expansion of scattering and take the limit ka -> 0, all the Bessel and Neuman functions reduce to simple expressions, and the multipole expansion is dominated by the dipole term.

Heuristically, the scattering particle sees a constant E and B at any instant of time, so it acquires a simple polarization state which oscillates in time, producing dipole radiation. Becasue the induces polarization is parallel to E, there is no scattering in the direction of the incident E.

Mie scattering is an exact solution to the scattering of a plane wave by a spherical particle, and so contains many features which are 'smoothened' by the Rayleigh approximation- interference between the transmitted and specularly reflected light, rainbows, Glory scattering, morphology-dependent resonances, internal reflections, polarization effects, etc.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
13K
  • · Replies 54 ·
2
Replies
54
Views
10K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K