Millikan Oil drop lab experiment - equation for speed of drop

Click For Summary
SUMMARY

The Millikan Oil Drop experiment is being replicated using 1-micron diameter latex spheres to measure the charge of an electron. The equations for the speed of the drops are derived considering linear air resistance, with v1 representing the speed against gravity and v2 with the electric field aiding gravity. The electric field (E) can be calculated using the formula E = V/d, where V is the voltage difference across the plates (50V, 100V, or 150V) and d is the distance between the plates (15mm). The charge (q) on each sphere must be an integer multiple of the elementary charge (e).

PREREQUISITES
  • Understanding of the Millikan Oil Drop experiment
  • Familiarity with basic physics concepts such as electric fields and forces
  • Knowledge of fluid dynamics, specifically air viscosity
  • Ability to perform calculations involving voltage and electric fields
NEXT STEPS
  • Learn how to calculate electric fields using E = V/d
  • Research methods for measuring the viscosity of air
  • Explore the implications of charge quantization in particles
  • Study the effects of varying voltage on particle motion in electric fields
USEFUL FOR

Physics students, experimental physicists, and educators interested in the principles of electrostatics and fluid dynamics as applied in the Millikan Oil Drop experiment.

Especial
Messages
1
Reaction score
0
Millikan Oil drop experiment.
For my current lab, we are recreating the milian oil drop experiment to measure the charge of an electron. However, we are using 1-micron diameter latex spheres in place of oil drops.

Problem:
I am having difficulty deriving an equation for the speed of the drop. Only the linear part of air resistance is taken into account. Without an electric field the particle takes about 15 seconds to fall a distance of 15mm. With the current applied, different spheres travel at different velocities dependent on their charge. And the same sphere moves faster when the field is applied in the direction of gravity.

Attempt at solution:
v1 is rising against gravity
v1 = [qE - mg] / (6*pi*eta*r)
where eta is viscosity of air
and
v2 is when field is reversed and aids gravity
v2 = [qE + mg] / (6*pi*eta*r)

---> How do I find qE if I know the voltage difference between the two plates is 50V. What about 100V or 150V?

---> How do I measure the viscosity of air to use in the equation for v1 and v2?

---> Does the charge “q” on each sphere have to be an integer multiple of e, the charge of a single electron?
 
Last edited:
Physics news on Phys.org
Especial said:
---> How do I find qE if I know the voltage difference between the two plates is 50V. What about 100V or 150V?
How is the electric field related to the voltage across the capacitor plates? Remember, the field between the plates may be assumed to be uniform.
Especial said:
---> How do I measure the viscosity of air to use in the equation for v1 and v2?
Use your zero field data.
Especial said:
---> Does the charge “q” on each sphere have to be an integer multiple of e, the charge of a single electron?
Yes.
 
So apparently the gap between the plates d is 15 mm. I assume the dimensions of the plates are larger than 15 mm. In that case the electric field near the center of the plates can be taken to be E = V/d across the full width of the gap.
 
mike.Albert99 said:
So apparently the gap between the plates d is 15 mm. I assume the dimensions of the plates are larger than 15 mm. In that case the electric field near the center of the plates can be taken to be E = V/d across the full width of the gap.
Correct.
 

Similar threads

Replies
12
Views
2K
Replies
6
Views
2K
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
2
Views
7K
  • · Replies 2 ·
Replies
2
Views
13K
Replies
1
Views
9K