I Minimization of thermodynamic equilibrium

Click For Summary
The discussion centers on the Helmholtz Potential Minimum Principle, which states that at equilibrium, the Helmholtz free energy of a system in thermal contact with a reservoir is minimized when the temperature is constant. An ideal gas in a closed system can illustrate this principle, where fixing temperature and volume allows the pressure to be determined through the minimization of Helmholtz free energy. The relationship between internal energy, entropy, and volume is established through the first law of thermodynamics, leading to the conclusion that the Helmholtz free energy is minimized under these conditions. A clear example involving an ideal gas is requested to further clarify the application of this principle. Understanding this concept is crucial for grasping thermodynamic potentials and their implications in equilibrium states.
Simobartz
Messages
13
Reaction score
1
Hi, I don't understand what does it mean that at equilibrium the proper thermodynamic potential of the system is minimized.
For example on the book Herbert B. Callen - Thermodynamics and an Introduction to Thermostatistics it is written:

Helmholtz Potential Minimum Principle. The equilibrium value of any unconstrained internal parameter in a system in diathermal contact with a heat reservoir minimizes the Helmholtz potential over the manifold of states for which ##T = T^r##.​
I tired to figure out an example of this using an ideal gas but I'm not sure i have understood. If i consider a closed system with a pure gas the thermodynamic variables are ##P,V,T##. If i put the system in thermal contact with a reservoir at ##T^r## then at equilibrium ##T=T^r##. But since the degree of freedom of a pure gas are two, then it is impossible to determine ##P## and ##V##. My guess is that if I fix also another external parameter like the volume ##V## then the last degree of freedom, the pressure, will be found by the minimization of the Helmoltz free energy ##(dF/dP)_{T,V}##. In this case the minimization of the thermodynamic potential would give me an equation equivalent to the equation of state and this is weird to me.

So, can you please give me an example about a pure gas in which Helmholtz Potential Minimum Principle can be used to determine the equilibrium state?
 
Science news on Phys.org
The "Helmholtz Potential" is free energy, i.e.,
$$F=U-TS.$$
From the 1st Law,
$$\mathrm{d} U=T \mathrm{d} S-p \mathrm{d} V$$
you get
$$\mathrm{d} F=-S \mathrm{d} T-p \mathrm{d} V.$$
That shows that the Helmholtz free energy is minimized by the equilibrium state for fixed temperature and volume.

I never can remember the names of all these potentials, but what's easy is the mathematical idea behind its definition. You start from the first Law and then take the Legendre transformations from ##U## to the wanted potential such that its "natural variables" (for ##U## it's ##S## and ##V##) are the ones kept constant in the process under consideration (i.e., ##F## is the right potential for isothermal-isochoric processes since the natural variables for it are ##T## and ##V##).
 
Hi, thanks for the reply. Can you give me an example in which Helmholtz free energy is minimized by the equilibrium state for fixed temperature and volume? If possible, can you use an ideal gas?
Sorry for insisting in asking the example but i feel like it is really important in this case to understand what we are speaking about
 
I think that if possible it should be easy to give an example. Am i asking something wrong?
 
Thread 'What thermal cycle would describe the action of a candle carousel?'
A candle carousel is a popular holiday time trinket that uses wooden if light metal vanes to rotate and assembly by using the heat created by burning a candle directly underneath. It occurred to me that this is a simple, albeit very inefficient heat engine. It resembles a rudimentary gas turbine in operation. I wondered what thermal cycle would best describe its operation. Since it resembles a gas turbine, the Brayton thermal cycle would seem to best describe it, however the...

Similar threads

Replies
135
Views
7K
Replies
16
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
3K
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K