Helmholtz entropy of ideal gas mixture is additive?

In summary: I believe I included the answer to both in my OP. Indeed, it seems like the problem I'm having is massaging a sum (on ##j##) over the first equation in my OP to be of the second equation's form, hence why I'm not sure if I'm making a mistake at the outset.Maybe something like this:$$F_j((T,V,N_j)=N_ju_j(T_0,v_0)+N_jC_{v,j}(T-T_0)-$$$$T\left[N_js_j(T_0,v_0)+N_jC_{v,j}\ln{(T/
  • #1
EE18
112
13
In his classic textbook, Callen remarks that
(1) The Helmholtz potential of a mixture of simple ideal gases is the sum of the Helmholtz potentials of each individual gas:$$ F(T,V,N_1, ... ,N_m)=F(T,V,N_1)+ ··· +F(T,V,N_m). $$
(2) An analogous additivity does not hold for any other potential expressed in terms of its natural variables.
I have labelled the claims (1) and (2). I am not sure about either. For the first, I have tried to proceed as follows (all equations are from Callen's second edition and all 0 subscripts are with respect to some reference state of an ideal gas):
We begin by noting that for a single component of the mixture (in the volume ##V## of the overall gas per the given formula in this problem) we have from (3.34) that
$$F_i(T,V,N_i) = U(T,V,N_i) - TS(T,V,N_i) $$
$$= c_iN_iRT -T\left(N_is_{i0} + c_iN_iR \ln (T/T_0) + N_iR \ln(V/V_0) - N_iR(c_i+1) \ln (N_i/N_0) \right)$$
Now for the mixture we have
$$F = U - TS $$
$$\stackrel{(1)}{\equiv} (\sum N_j c_j)RT - T\left( \sum N_js_{j0} + (\sum N_j c_j)R \ln (T/T_0) + (\sum N_j) R \ln(V/V_0) -R \sum N_j \ln(N_i/N)\right).$$
where (1) is from (3.39) and (3.40) (i.e. from the definition of ##F## that for a mixture of ideal gases (i.e. in the same vessel), we form ##U-TS## for ##U## and ##S## of the entire system).
I can't see how to go further in terms of identifying one with the other

But even supposing I can show that, what does claim (2) mean? Is Callen saying that there is no other thermodynamic potential (partial Legendre transform of the energy ##U##) which is such that this additivity holds in terms of natural variables? Obviously ##U = \sum N_jc_j RT## which is additive, but I guess this isn't a counter example since ##T## isn't a natural variable of ##U##?
 
Science news on Phys.org
  • #2
I think you mean Helmholtz free energy, not Helmholtz entropy.

I think it might help to consider the following questions:

What is Gibbs theorem for the partial molar properties of the components in an ideal gas mixture?

What is the equation for the partial pressure of a gas component in an ideal gas mixture in terms of Nj, R, T, and V.

What is the equation for the partial molar entropy of a gas component in an ideal gas mixture as a function of temperature and partial pressure?

What is the equation for the partial molar Helmholtz free energy of a gas component in an ideal gas mixture in terms of temperature and partial pressure?
 
  • #3
Chestermiller said:
I think you mean Helmholtz free energy, not Helmholtz entropy.
Oy, yes I did mean Helmholtz (free) energy -- I've been thinking too much about the entropy because of another question I had clearly! If you do get the chance, that question is here. I've been very grateful for your insights on thermodynamics as I work through Callen, both now and in the past!

For these:
What is Gibbs theorem for the partial molar properties of the components in an ideal gas mixture?

What is the equation for the partial pressure of a gas component in an ideal gas mixture in terms of Nj, R, T, and V.

"The contribution to a property of a mixture of ideal gases is the sum of the properties that each component gas would have if it alone were to occupy the volume V at temperature T"
and
##P_i = N_iRT/V.##

I don't think either of these is relevant for this particular question though?

For these:
What is the equation for the partial molar entropy of a gas component in an ideal gas mixture as a function of temperature and partial pressure?

What is the equation for the partial molar Helmholtz free energy of a gas component in an ideal gas mixture in terms of temperature and partial pressure?
I believe I included the answer to both in my OP. Indeed, it seems like the problem I'm having is massaging a sum (on ##j##) over the first equation in my OP to be of the second equation's form, hence why I'm not sure if I'm making a mistake at the outset.
 
  • #4
Maybe something like this: $$F_j((T,V,N_j)=N_ju_j(T_0,v_0)+N_jC_{v,j}(T-T_0)-$$$$T\left[N_js_j(T_0,v_0)+N_jC_{v,j}\ln{(T/T_0)}+N_jR\ln{\left(\frac{V}{N_jv_0}\right)}\right]$$where ##T_0## and ##v_0## are the temperature and molar volume in a reference state, and ##s_j## and ##u_j## are the molar entropy and molar internal energy of species j in the reference state. Then substitute $$\ln\left(\frac{V}{N_jv_0}\right)=\ln\left(\frac{V}{x_jNv_0}\right)=\ln\left(\frac{V}{Nv_0}\right)-\ln{x_j}$$
 
Last edited:

1. What is the Helmholtz entropy of an ideal gas mixture?

The Helmholtz entropy of an ideal gas mixture is a measure of the disorder or randomness of the system. It takes into account both the number of particles in the system and their energy levels.

2. Why is the Helmholtz entropy of an ideal gas mixture considered additive?

The Helmholtz entropy of an ideal gas mixture is considered additive because it can be calculated by summing the individual entropies of each component gas in the mixture. This means that the total entropy of the mixture is equal to the sum of the entropies of its individual components.

3. How is the Helmholtz entropy of an ideal gas mixture related to the Boltzmann entropy?

The Helmholtz entropy of an ideal gas mixture is related to the Boltzmann entropy through the use of the Boltzmann equation. This equation relates the entropy of a system to the number of possible microstates that it can have at a given energy level.

4. Can the Helmholtz entropy of an ideal gas mixture ever be negative?

No, the Helmholtz entropy of an ideal gas mixture can never be negative. This is because entropy is a measure of disorder and randomness, and a negative value would imply a perfectly ordered system with no randomness.

5. How does temperature affect the Helmholtz entropy of an ideal gas mixture?

Temperature has a direct effect on the Helmholtz entropy of an ideal gas mixture. As temperature increases, the entropy of the system also increases, indicating a greater degree of disorder and randomness. Conversely, as temperature decreases, the entropy decreases, indicating a more ordered system.

Similar threads

Replies
19
Views
1K
Replies
6
Views
947
Replies
23
Views
1K
Replies
13
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
943
  • Advanced Physics Homework Help
Replies
9
Views
3K
  • Introductory Physics Homework Help
Replies
8
Views
1K
  • Introductory Physics Homework Help
Replies
8
Views
1K
  • Thermodynamics
Replies
15
Views
11K
Replies
9
Views
3K
Back
Top