Minimizing the voltage drop across a capacitor (solution shown)

AI Thread Summary
The discussion revolves around understanding the derivation of the equation V1 = V0 - V2 in the context of capacitors in series. The user seeks clarification on how this equation is formulated and why V3 is not considered in the calculation. It is emphasized that the total potential difference remains constant, leading to the relationship V0 = V1 + V2. The conversation also hints at the relevance of Kirchhoff’s laws in analyzing the circuit. Overall, the focus is on grasping the voltage relationships in capacitor circuits.
Sunwoo Bae
Messages
60
Reaction score
4
Homework Statement
Shown in the text
Relevant Equations
Q = CV

capacitors in series
capacitors in parallel
The following is the question and the solution to the question.
1643444698737.png


I understand the solution to the part where you find the Ceq and derive Qeq from the equation Q = Ceq*V.
However, I do not understand where V1 = V0-V2 come from.
When calculating the minimum voltage, how do you come up with the equation V1 = V0-V2, and why is V3 not taken to account?
 
Physics news on Phys.org
Sunwoo Bae said:
I do not understand where V1 = V0-V2 come from.
given and total potential difference is always same.
Here given potential difference is ##V_0## and total potential difference is ##V_1+V_2##

So ##V_0=V_1+V_2##
 
Sunwoo Bae said:
Homework Statement:: Shown in the text
Relevant Equations:: Q = CV

capacitors in series
capacitors in parallel

The following is the question and the solution to the question.
View attachment 296217

I understand the solution to the part where you find the Ceq and derive Qeq from the equation Q = Ceq*V.
However, I do not understand where V1 = V0-V2 come from.
When calculating the minimum voltage, how do you come up with the equation V1 = V0-V2, and why is V3 not taken to account?
Are you familiar with Kirchhoff’s laws?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top