# Minimizing the voltage drop across a capacitor (solution shown)

• Sunwoo Bae

#### Sunwoo Bae

Homework Statement
Shown in the text
Relevant Equations
Q = CV

capacitors in series
capacitors in parallel
The following is the question and the solution to the question. I understand the solution to the part where you find the Ceq and derive Qeq from the equation Q = Ceq*V.
However, I do not understand where V1 = V0-V2 come from.
When calculating the minimum voltage, how do you come up with the equation V1 = V0-V2, and why is V3 not taken to account?

I do not understand where V1 = V0-V2 come from.
given and total potential difference is always same.
Here given potential difference is ##V_0## and total potential difference is ##V_1+V_2##

So ##V_0=V_1+V_2##

Homework Statement:: Shown in the text
Relevant Equations:: Q = CV

capacitors in series
capacitors in parallel

The following is the question and the solution to the question.
View attachment 296217

I understand the solution to the part where you find the Ceq and derive Qeq from the equation Q = Ceq*V.
However, I do not understand where V1 = V0-V2 come from.
When calculating the minimum voltage, how do you come up with the equation V1 = V0-V2, and why is V3 not taken to account?
Are you familiar with Kirchhoff’s laws?