MIT OCW 8.01 PS10.6: A Massive Pulley and a Block on an Incline

Click For Summary
SUMMARY

The discussion centers on solving the dynamics of a block on an incline connected to a pulley, specifically using the equations of motion and torque. The derived formula for the linear acceleration of the block is ##a_{1} = \frac{2mgsin(\beta)}{m_{p} + 2m}##, leading to the time to travel distance ##d## as ##t = \sqrt{\frac{(m_{p} + 2m)d}{mgsin(\beta)}}##. The solution confirms that the time taken is independent of the pulley's radius ##R##, as the mass of the pulley remains constant while its moment of inertia increases with radius. Feedback suggests a more efficient approach by substituting angular acceleration directly into the force equations.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Familiarity with rotational dynamics and moment of inertia
  • Knowledge of kinematics equations
  • Basic grasp of trigonometric functions in physics contexts
NEXT STEPS
  • Study the relationship between torque and angular acceleration in rotational systems
  • Learn about the implications of moment of inertia on rotational motion
  • Explore advanced kinematics involving multiple bodies and constraints
  • Investigate the effects of varying mass and radius on system dynamics
USEFUL FOR

Students and educators in physics, particularly those focusing on mechanics, as well as engineers and anyone involved in analyzing systems with pulleys and inclined planes.

giodude
Messages
30
Reaction score
1
Homework Statement
(Screen shot of question is posted below)

Consider a pulley of mass ##m_{p}## and radius ##R## that has a moment of inertia ##\frac{1}{2}m_{p}R^{2}##. The pulley is free to rotate about a frictionless pivot at its center. A massless string is wound around the pulley and the other end of the rope is attached to a block of mass ##m## that is initially held at rest on a frictionless inclined plane that is inclined at an angle ##\beta## with respect to the horizontal. The downward acceleration of gravity is ##g##. The block is released from rest.

How long does it take the block to move a distance ##d## down the inclined plane? Write your answer using some or all of the following: ##R##, ##m##, ##g##, ##d##, ##m_{p}##, ##\beta##.
Relevant Equations
$$\tau_{total} = I_{s} \alpha$$
$$I_{s} = \frac{1}{2}m_{p}R^{2}$$
$$a_{1} = \alpha_{1}R$$
Set up the force equations:
(1) ##mgsin(\beta) - T = ma_{1}##
(2) ##TR = I_{s}\alpha_{1}##

Multiply (1) by ##R## and isolate ##TR##:
##R(mgsin(\beta) - T) = R(ma_{1})##
##mRgsin(\beta) - TR = mRa_{1}##
##TR = mRgsin(\beta) - mRa_{1}##

Plug ##TR## into (2):
##TR = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = \frac{1}{2}m_{p}R^{2}\alpha_{1}##

Solve for the ##\alpha_{1}##:
##\alpha_{1} = \frac{mRgsin(\beta) - mRa_{1}}{\frac{1}{2}m_{p}R^{2}}##
(3) ##\alpha_{1} = 2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##

We now use (3) to solve for linear acceleration, ##a_{1}##:
##2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##
##m_{p}a_{1} + 2ma_{1} = 2mgsin(\beta)##
(4) ##a_{1} = \frac{2mgsin(\beta)}{m_{p} + 2m}##

Use (4) to solve the linear kinematics equation for t:
##d = \frac{1}{2} a_{1} t^{2}##
##t = \sqrt{\frac{2d}{a_{1}}}##
$$t = \sqrt{\frac{(m_{p} + 2m)d}{mgsin(\beta)}}$$

I wonder if this solution is correct given that the time to move distance ##d## is independent of the radius ##R## of the pulley. The only intuitive possibility I could think of is a proportional relationship between torque required to achieve a certain angular acceleration and the size of the pulley. Since as the pulley increases as would the leverage and torque required to achieve same angular acceleration. However, I'm not confident in this intuition so I'd love feedback on (a) if my solution is correct and (b) if my intuition explaining the solution is correct. Thank you in advance!
 

Attachments

  • Screen Shot 2023-10-03 at 9.49.33 PM.png
    Screen Shot 2023-10-03 at 9.49.33 PM.png
    17.8 KB · Views: 109
Last edited:
Physics news on Phys.org
giodude said:
Homework Statement: (Screen shot of question is posted below)

Consider a pulley of mass ##m_{p}## and radius ##R## that has a moment of inertia ##\frac{1}{2}m_{p}R^{2}##. The pulley is free to rotate about a frictionless pivot at its center. A massless string is wound around the pulley and the other end of the rope is attached to a block of mass ##m## that is initially held at rest on a frictionless inclined plane that is inclined at an angle ##\beta## with respect to the horizontal. The downward acceleration of gravity is ##g##. The block is released from rest.

How long does it take the block to move a distance ##d## down the inclined plane? Write your answer using some or all of the following: ##R##, ##m##, ##g##, ##d##, ##m_{p}##, ##\beta##.
Relevant Equations: $$\tau_{total} = I_{s} \alpha$$
$$I_{s} = \frac{1}{2}m_{p}R^{2}$$
$$a_{1} = \alpha_{1}R$$

Set up the force equations:
(1) ##mgsin(\beta) - T = ma_{1}##
(2) ##TR = I_{s}\alpha_{1}##

Multiply (1) by ##R## and isolate ##TR##:
##R(mgsin(\beta) - T) = R(ma_{1})##
##mRgsin(\beta) - TR = mRa_{1}##
##TR = mRgsin(\beta) - mRa_{1}##

Plug ##TR## into (2):
##TR = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = \frac{1}{2}m_{p}R^{2}\alpha_{1}##

Solve for the ##\alpha_{1}##:
##\alpha_{1} = \frac{mRgsin(\beta) - mRa_{1}}{\frac{1}{2}m_{p}R^{2}}##
(3) ##\alpha_{1} = 2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##

We now use (3) to solve for linear acceleration, ##a_{1}##:
##2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##
##m_{p}a_{1} + 2ma_{1} = 2mgsin(\beta)##
(4) ##a_{1} = \frac{2mgsin(\beta)}{m_{p} + 2m}##

Use (4) to solve the linear kinematics equation for t:
##d = \frac{1}{2} a_{1} t^{2}##
##t = \sqrt{\frac{2d}{a_{1}}}##
$$t = \sqrt{\frac{(m_{p} + 2m)d}{mgsin(\beta)}}$$

I wonder if this solution is correct given that the time to move distance ##d## is independent of the radius ##R## of the pulley. The only intuitive possibility I could think of is a proportional relationship between torque required to achieve a certain angular acceleration and the size of the pulley. Since as the pulley increases as would the leverage and torque required to achieve same angular acceleration. However, I'm not confident in this intuition so I'd love feedback on (a) if my solution is correct and (b) if my intuition explaining the solution is correct. Thank you in advance!
Your solution is correct. A bit inefficient solving for ##\alpha##. Just eliminate it as soon as possible by subbing ##\alpha = \frac{a}{R}## into (1) after subbing (2), And go right to ##a##.
 
Thank you!
 
giodude said:
I wonder if this solution is correct given that the time to move distance d is independent of the radius R of the pulley. The only intuitive possibility I could think of is a proportional relationship between torque required to achieve a certain angular acceleration and the size of the pulley. Since as the pulley increases as would the leverage and torque required to achieve same angular acceleration.
There's a bit more to it. The MoI rises as the square of R, while both the torque and the distance the mass moves per unit of rotation rise in proportion to R.
It may also seem intuitively wrong because you would expect the pulley's mass to increase too, but it is given as fixed.
 
Oh, I think I see. Since the mass of the pulley is fixed, as the size of the pulley increase its really just a purely proportional change because the actual mass isn't increasing (or decreasing) whereas the time dependency is "focused" on the mass of the pulley rather than the shape of it. Which we see by ##m_{p}## being in the solution for time while ##R## is not.
 
1696830241692.png
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 40 ·
2
Replies
40
Views
5K
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K