Mixed states and total wave function for three-Fermion-systems

Like Tony Stark
Messages
182
Reaction score
6
Homework Statement
Find the total wave function (including the spatial part) of a system of three spin ##\frac{1}{2}## particles.
Relevant Equations
##\Psi = \psi_s(x_1, x_2, x_3) \xi_a (S_1, S_2, S_3) + \psi_a(x_1, x_2, x_3) \xi_s (S_1, S_2, S_3)##
I've already calculated the total spin of the system in the addition basis:

##\ket{1 \frac{3}{2} \frac{3}{2}}; \ket{1 \frac{3}{2} \frac{-3}{2}}; \ket{1 \frac{3}{2} \frac{1}{2}}; \ket{1 \frac{3}{2} \frac{-3}{2}}; \ket{0 \frac{1}{2} \frac{1}{2}}; \ket{0 \frac{1}{2} \frac{-1}{2}}; \ket{1 \frac{1}{2} \frac{1}{2}}; \ket{1 \frac{1}{2} \frac{-1}{2}}##

The states corresponding to the ##j=\frac{3}{2}##-subspace are symmetric and I'll call it ##\xi_s (S_1, S_2, S_3)##, while the other states are neither symmetric nor antisymmetric.

The total wave function must be antisymmetric since the system is fermionic. If there were antisymmetric states, the wave function would be:

##\Psi = \psi_s(x_1, x_2, x_3) \xi_a (S_1, S_2, S_3) + \psi_a(x_1, x_2, x_3) \xi_s (S_1, S_2, S_3)##

with

##\psi_s(x_1, x_2, x_3)=\frac{1}{\sqrt{3!}} [\psi_1 (x_1) \psi_2 (x_2) \psi_3 (x_3)+\psi_1 (x_1) \psi_2 (x_3) \psi_3 (x_2)+\psi_1 (x_2) \psi_2 (x_1) \psi_3 (x_3)+\psi_1 (x_2) \psi_2 (x_3) \psi_3 (x_1)+\psi_1 (x_3) \psi_2 (x_1) \psi_3 (x_2)+\psi_1 (x_3) \psi_2 (x_2) \psi_3 (x_1)]##

##\psi_a(x_1, x_2, x_3)=\frac{1}{\sqrt{3!}} [\psi_1 (x_1) \psi_2 (x_2) \psi_3 (x_3)-\psi_1 (x_1) \psi_2 (x_3) \psi_3 (x_2)-\psi_1 (x_2) \psi_2 (x_1) \psi_3 (x_3)+\psi_1 (x_2) \psi_2 (x_3) \psi_3 (x_1)+\psi_1 (x_3) \psi_2 (x_1) \psi_3 (x_2)-\psi_1 (x_3) \psi_2 (x_2) \psi_3 (x_1)]##

But we don't have ##\xi_a (S_1, S_2, S_3)## states.

What should I do?
 
Physics news on Phys.org
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top