Karol
- 1,380
- 22
Homework Statement
To calculate I, the moment of inertia of an ellipse of mass m.
The radius are a and b, according to the drawing.
Homework Equations
I=mr^2
Ellipse:
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \Rightarrow y=b\sqrt{1-\frac{x^2}{a^2}}
Area of an ellipse: \piab
The Attempt at a Solution
I=4\frac{m}{\pi a b} \int_{x=0}^{a}dx \int_{y=0}^{b\sqrt{1-\frac{x^2}{a^2}}} x^2+y^2 dy
I=4\frac{m}{\pi a b} \left(\int_{x=0}^{a}dx \int_{y=0}^{b\sqrt{1-\frac{x^2}{a^2}}} x^2dy+\int_{x=0}^{a}dx \int_{y=0}^{b\sqrt{1-\frac{x^2}{a^2}}} y^2 dy \right)
I=4\frac{m}{\pi a b} \left(\int_{x=0}^{a} x^2 \left[y\right]_{0}^{b\sqrt{1-\frac{x^2}{a^2}}}dx+\int_{x=0}^{a}\frac{1}{3}\left[y^3\right]_{0}^{b\sqrt{1-\frac{x^2}{a^2}}}dx \right)
I=4\frac{m}{\pi a b} \left( \frac{b}{a}\int_{x=0}^{a}x^2\sqrt{a^2-x^2}dx+\frac{b^3}{3}\int_{x=0}^{a}\left(1-\frac{x^2}{a^2}\right)^{3/2}dx\right)
I=4\frac{m}{\pi a b} \left( \frac{b}{a}\int_{x=0}^{a}x^2\sqrt{a^2-x^2}dx+\frac{b^3}{3a^3}\int_{x=0}^{a} (a^2-x^2)^{3/2}dx \right)
And it gives complicated expressions which include \arcsin.
The answer should be:
I=m(a^2+b^2)/4