A Momentum Constraint in GR: ADM Formalism

Sergei65
Messages
6
Reaction score
1
Momentum constraint in GR in ADM formalism is written in the form

$$\mathcal M_i=\gamma_{ij}D_k\pi^{kj},~~~~~~~~~~(1a)$$ or equivalently

$$\mathcal M_i=D_k\pi^{k}_i,~~~~~~~~~~(1b)$$ where
##\pi^{ij}=-\gamma^{1/2}\left(K^{ij}-\gamma^{ij}K\right)~##, ##K=\gamma^{ij}K_{ij}~##, ##\gamma=\det \gamma_{ij}~## and ##D_i~## is covariant derivative. This is from DeWitt1967 parer and original ADM parer.

However, those who deal with numerical relativity uses $$\mathcal
M_i=D_jK^j_i-D_iK.~~~~~~~~~~~~~~~(2)$$

What formula is right? (they coincides only if ##\gamma## does not depend on spatial coordinates, which is evidently not the case.
 
Physics news on Phys.org
Sergei65 said:
Momentum constraint in GR in ADM formalism is written in the form

$$\mathcal M_i=\gamma_{ij}D_k\pi^{kj},~~~~~~~~~~(1a)$$ or equivalently

$$\mathcal M_i=D_k\pi^{k}_i,~~~~~~~~~~(1b)$$ where
##\pi^{ij}=-\gamma^{1/2}\left(K^{ij}-\gamma^{ij}K\right)~##, ##K=\gamma^{ij}K_{ij}~##, ##\gamma=\det \gamma_{ij}~## and ##D_i~## is covariant derivative. This is from DeWitt1967 parer and original ADM parer.

However, those who deal with numerical relativity uses $$\mathcal
M_i=D_jK^j_i-D_iK.~~~~~~~~~~~~~~~(2)$$

What formula is right? (they coincides only if ##\gamma## does not depend on spatial coordinates, which is evidently not the case.

I think the equations 1a, 1b and 2 are all same (besides a factor of ##-\sqrt{\gamma}## in equation 2). To establish the equality you need to use the fact that the intrinsic covariant derivative is (pullback) metric compatible. Also ##D_i\sqrt{\gamma}=\frac{1}{2}\sqrt{\gamma}\gamma^{ab}D_i\gamma_{ab}=0##
 
  • Like
Likes Sergei65 and Dale
Let me ask, why we could not write ##D_i\sqrt {\gamma}=\partial_i \sqrt {\gamma}\sim\gamma^{ab}\partial_i\gamma_{ab}\ne0##? I ask this because it is well known that ##d\gamma\sim\gamma^{ab}d\gamma_{ab}##, where ##d## is usual differencial. From the other hand it seems that ##D_i\gamma=\partial_i \gamma##.
 
Last edited:
Last edited:
  • Like
Likes Ravi Mohan
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top