MHB Momentum of Falling Ball X & Ball Y: A Physics Puzzle

Shah 72
MHB
Messages
274
Reaction score
0
Ball X has mass 0.03kg. It falls vertically from rest from a window that is 30 m above the ground. Ball Y has mass 0.01kg. At the same time that Ball X starts to fall, Ball Y is projected vertically upwards from ground level directly towards Ball X. The initial speed of Ball Y is 20 m/s vertically upwards.

a) Find the downward momentum of each Ball just before they meet.

The Ball coalesce and the combined object falls to the ground.
b) show that the combined object reaches the ground 2.68 s after Ball X started to fall.
Pls help as I don't know how to solve.
 
Mathematics news on Phys.org
let $d$ be the distance above ground the two masses collide ...

$d = 20t - 5t^2$
$-(30-d) = -5t^2$

solve for $t$, the time of collision, and $d$

falling mass, $v_{f1} = 0 - 10t$
rising mass, $v_{f2} = 20 - 10t$

conservation of momentum ...

$Mv_{f1} + mv_{f2} = (M+m)V$, where $V$ is the velocity of the combined masses after the collision

you should have the position of collision and $V$ the initial velocity after the collision ... calculate the time necessary to hit the ground and add to the time of collision
 
skeeter said:
let $d$ be the distance above ground the two masses collide ...

$d = 20t - 5t^2$
$-(30-d) = -5t^2$

solve for $t$, the time of collision, and $d$

falling mass, $v_{f1} = 0 - 10t$
rising mass, $v_{f2} = 20 - 10t$

conservation of momentum ...

$Mv_{f1} + mv_{f2} = (M+m)V$, where $V$ is the velocity of the combined masses after the collision

you should have the position of collision and $V$ the initial velocity after the collision ... calculate the time necessary to hit the ground and add to the time of collision
Thank you very much!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top