A More on Parallel Transport: Existence & Uniqueness

pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,397
Reaction score
1,577
The recent thread on parallel transport has raised a couple of things I'd like to review for my own sake. I'll address them one at a time as my time permits.

The first question is this. If we offer ##t^a \nabla_a u^b## or the equivalent ##\nabla_{\vec{t}} u^b## as the definition of parallel transport of a vector ##\vec{u}## along some curve C with tangent ##\vec{t}##, how do we show the existence and uniqueness of parallel transport? To be a bit more clear, we have some curve C with a tangent ##t^a##, and we are assuming that some derivative operator ##\tilde{\nabla}_a## exists and is well-defined. At this point we aren't making any more specific assumptions about ##\tilde{\nabla}_a##, in fact if we follow Wald's logic we are assuming that there are many possible ways to define a derivative operator that meet the necessary axioms, and we are free to pick any of them. Eventually, we'll realize that these other derivative operators yield other connections, and that for the purposes of doing GR the connection we are interested in is the Levi-Civita connection. But at this point we are only assuming that we've singled out one specific possibility for the derivative operator, and we want to show that this implies we've also singled out some specific notion of parallel transport.

Given then, that we have a well-defined derivative operator, if we have a curve, and we have a vector on the curve, how do we go about showing that this definition yields a unique answer to the question of parallel transporting said vector along said curve? I think in the recent thread, there were some concerns about the existence and uniqueness of this concept of parallel transport. Having a definition, if it's a good one, should address these concerns.
 
Physics news on Phys.org
John Lee, in his book Riemannian Manifolds presents a proof of this as Theorem 4.11 ('Parallel Translation'). The derivative used to determine the parallellness of the transported vector field is a general covariant derivative, not required to be the Levi-Civita.

It is based on a theorem about the existence and uniqueness of a solution to a certain type of linear ODE, which is presented by Lee as Theorem 4.12.

I google searched some words from the hard copy and came up with this link to the relevant pages on Google books. Maybe it will work for others.
 
  • Like
Likes martinbn, fresh_42 and PeterDonis
The question was answered but I want to make a side comment. You start with a curve and a vector field along the curve and you want to be able to tell whether it is parallel along the curve. For that you have to be able to differentiate it in the direction of the tangent vector. And there is a subtle point here. If you have a vector field on the manifold you can restrict it to the curve and have a field along the curve. But not every field along the curve is of that form. For example when the curve self intersects you cannot always extend a field on the curve to a field on the whole manifold. So in general you cannot just extend and differentiate. So you have to prove (as done in diff.geom. books, I believe in Lee's as well, and some GR books) that there is a derivative operator that acts on fields on the curve that agrees with the derivative operator from the connection when the field is extendable.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
6
Views
972
Replies
9
Views
3K
Replies
63
Views
5K
Replies
10
Views
2K
Replies
7
Views
3K
Replies
5
Views
1K
Back
Top