MHB Mortifiedpenguin1's Question from Math Help Forum

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
Click For Summary
The discussion addresses how to prove that three vectors, v = (3,-1,2), b = (4,2,-5), and n = (1,3,-7), form a closed triangle by demonstrating they are non-collinear. This is established by calculating the cross product of the vectors \(\overrightarrow{vb}\) and \(\overrightarrow{vn}\), which yields a non-zero result, confirming they are not parallel. The lengths of the vectors are calculated, and using the Cosine rule, the angle between two sides is found to be approximately 119.1 degrees. This indicates that the triangle formed is an obtuse triangle. The solution effectively shows both the non-collinearity and the type of triangle formed by the vectors.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Title: How do you do this problem?

Please offer step by step solutions http://mathhelpforum.com/images/smilies/smile.png

There are three vectors. They are v= (3,-1,2), b= (4,2,-5) and n= (1,3,-7). Please prove that they form a closed triangle. What type of triangle is it?

Thanks!

Hi mortifiedpenguin1, :)

I presume what you meant by a "closed triangle" is in fact to show that the given three points are non-collinear; so that a triangle is uniquely determined.

You can show that the points are not collinear by showing that the two vectors \(\overrightarrow{vb}\mbox{ and }\overrightarrow{vn}\) are not parallel. That is their cross product, \(\overrightarrow{vb}\times\overrightarrow {vn}\neq\underline{0}\)

\[\overrightarrow{vb}=\mathbf{b}-\mathbf{v}=(4,2,-5)-(3,-1,2)=(1,3,-7)\]

\[\overrightarrow {vn}=\mathbf{n}-\mathbf{v}=(1,3,-7)-(3,-1,2)=(-2,4,-9)\]

\[\Rightarrow\overrightarrow {vb}\times\overrightarrow {vn}=\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}\\1 & 3 & -7\\-2 & 4 & -9 \end{vmatrix}=(1,23,10)\neq\underline{0}\]

Therefore the three points are not collinear, and hence they determine a unique triangle.

We shall also find the vector, \(\overrightarrow {bn}\)

\[\overrightarrow {bn}=\mathbf{n}-\mathbf{b}=(1,3,-7)-(4,2,-5)=(-3,1,-2)\]

Consider the length of the vectors, \(\overrightarrow{vb},\, \overrightarrow {vn}\mbox{ and }\overrightarrow {bn}\).

\[|\overrightarrow{vb}|=\sqrt{1^2+3^2+7^2}=\sqrt{59}\]

\[|\overrightarrow {vn}|=\sqrt{2^2+4^2+9^2}=\sqrt{101}\]

\[|\overrightarrow {bn}|=\sqrt{3^2+1^2+2^2}=\sqrt{14}\]

Let \(\theta\) be the angle between the sides, \(\mbox{vb}\) and \(\mbox{bn}\). By the Cosine rule,

\[|\overrightarrow {vn}|^2=|\overrightarrow{vb}|^2+|\overrightarrow {bn}|^2-2|\overrightarrow{vb}||\overrightarrow {bn}|\cos\theta\]

\[\Rightarrow\cos\theta=-\frac{(101-59-14)}{2\sqrt{14}\sqrt{59}}\approx -0.4871\]

\[\Rightarrow\theta\approx 119.1^{0}\]

Therefore this is an Obtuse triangle.

Kind Regards,
Sudharaka.
 
Mathematics news on Phys.org
b-v-n=0 Hence we have a closed triangle
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
471
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K