Motion of a Charged Particle in Magnetic Field

AI Thread Summary
The discussion revolves around calculating the strength of a magnetic field required to hold antiprotons in a circular path. The relevant equations include F = ma and F = qvB, with values provided for velocity, mass, charge, and radius. The initial calculation yielded a negative magnetic field strength of -0.26T, which was corrected to the positive value of 0.26T, emphasizing the importance of considering magnitude. The conclusion clarifies that taking the absolute value is necessary for determining the strength of the magnetic field. Understanding this concept is crucial for applications involving charged particles in magnetic fields.
Ignitia
Messages
21
Reaction score
5

Homework Statement


Viewers of Star Trek have heard of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy source is to store antimatter charged particles in a vacuum chamber, circulating in a magnetic field, and then extract them as needed. Antimatter annihilates normal matter, producing pure energy. What strength magnetic field is needed to hold antiprotons, moving at 5.0×107m/s in a circular path 2.00 m in radius? Antiprotons have the same mass as protons but the opposite (negative) charge.

Homework Equations


F = ma = m * (v2/r)
F = qvB

The Attempt at a Solution


Okay, this is pretty straightforward:

v = 5.0x10-7 m/s
m = 1.672x10-27 kg
q = -1.6x10-19C
r = 2m

F = qvB
F/(qv) = B
[(m*(v2) / r ] * 1/(qv) = B
(mv/rq) = B

Plugging in the values, answer becomes - 0.26T, but the correct answer is 0.26T. What am I missing?
 
Physics news on Phys.org
Strength of magnetic field is another name for magnitude which is a positive number.
 
  • Like
Likes Ignitia
kuruman said:
Strength of magnetic field is another name for magnitude which is a positive number.

So I just take the absolute value? That makes sense, thanks.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top