Graduate Motion of a spring that has mass

Click For Summary
The discussion focuses on deriving the equations of motion for a spring with a uniform mass distribution at time t=0. The initial approach involves modeling the system using discrete springs connected to masses and results in a second derivative equation for motion. The conversation then shifts to a continuous model, defining local tension and mass distribution along the spring using material coordinates. A force balance equation is established to relate tension changes to the acceleration of the mass elements. A relevant open-access paper is provided for further reading on the topic.
jaumzaum
Messages
433
Reaction score
33
Hello!

I was trying to find the equations of motion for a spring with uniform distribution of mass (uniform just in t=0, because after a while the distribution will be non-uniform).
I tried to attack this problem first in the discrete (non-continuous) way:

"Consider N springs with elastic constant k joining N masses m. Find the acceleration of the i-th mass over time)".

Then I found the following equation for the motion:

$$k(x_{i+1}-2x_{i}+x_{i-1})=ma_{i}$$
I know the first term seems like a second derivative, however I was not able to either solve this system nor extrapolate that in the continuous way.
Can you guys help me with this problem (for example, trying to help me to find the equations of motion or showing me any paper or website that explains how to find them)?
 
Physics news on Phys.org
The mass distribution remains uniform provided us specify location using a material (body) coordinate.
 
  • Like
Likes vanhees71 and Chestermiller
Following up on what Dr. D said, let L be the unstretched length of the spring, and let s be a material coordinate that runs from s = 0 at one end of the spring to s = L at the other end of the spring. Also, let x(s,t) be the location at time t of the material element situated at material location s along unstretched configuration of the spring. Then based on this, the local tension T in the spring at material location s and time t is given by $$T(s,t)=kL\left(\frac{\partial x}{\partial s}-1\right)$$ Also, the mass between material locations s and ##s+\Delta s## is given by: $$\rho \Delta s$$ where ##\rho## is the linear density of the unstretched spring. So a force balance on a short section of the spring between material coordinates s and ##s+\Delta s## becomes: $$T(s+\Delta s,t)-T(s,t)=\rho \Delta s\frac{\partial ^ 2x}{\partial t^2}$$
 
Last edited:
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 131 ·
5
Replies
131
Views
8K