Multivariable calculus proof involving the partial derivatives of an expression

Click For Summary
The discussion centers on proving the equation xf_x + yf_y + zf_z = nf(x, y, z) for a multivariable function f that satisfies f(tx, ty, tz) = t^n f(x, y, z). Participants suggest using partial derivatives with respect to t instead of introducing new variables u, v, and w. There is a critique regarding the clarity of the original equation, noting that the arguments for the partial derivatives should match those of the function f. The conclusion indicates that differentiating f(tx, ty, tz) with respect to t is the next step in the proof. The conversation emphasizes the importance of precision in mathematical notation and reasoning.
KungPeng Zhou
Messages
22
Reaction score
7
Homework Statement
Supposed f is a function of several variables that satisfies the equation f(tx, ty, tz) =t^{n}f(x, y, z),(t as any number).
Prove:
##xf_{x}+yf_{y}+zf_{z}=nf(x, y, z) ##
Relevant Equations
Partial derivative related formulas
For the first equation:
##f(tx, ty, tz)=f(u, v, w) ##, ##u=tx, v=ty, w=tz##,##k=f(u, v, w) ####
t^{n}f_{x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}##
As the same calculation
##xf_{x}+yf_{y}+zf_{z}=[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} +\frac{\partial f}{\partial z}] t^{1-n}##
But I can't continue with it.
 
Physics news on Phys.org
KungPeng Zhou said:
Homework Statement: Supposed f is a function of several variables that satisfies the equation f(tx, ty, tz) =t^{n}f(x, y, z),(t as any number).
Prove:
##xf_{x}+yf_{y}+zf_{z}=nf(x, y, z) ##
Relevant Equations: Partial derivative related formulas

For the first equation:
##f(tx, ty, tz)=f(u, v, w) ##, ##u=tx, v=ty, w=tz##,##k=f(u, v, w) ####
t^{n}f_{x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}##
As the same calculation
##xf_{x}+yf_{y}+zf_{z}=[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} +\frac{\partial f}{\partial z}] t^{1-n}##
But I can't continue with it.
Introducing the variables ##u, v, w## looks unnecessary to me. Why not partially differentiate with respect to ##t##?
 
KungPeng Zhou said:
Prove:
##xf_{x}+yf_{y}+zf_{z}=nf(x, y, z) ##
Note that this equation is somewhat sloppy. The arguments of the function ##f## are given on the right-hand side, but the arguments of the functions ##f_x, f_y## and ##f_z## on the left-hand side are not. More precise and logical would be:$$xf_{x}(x, y, x)+yf_{y}(x, y, z)+zf_{z}(x, y, z)=nf(x, y, z)$$Or, in shorthand:$$xf_{x}+yf_{y}+zf_{z}=nf$$Where the arguments ##(x, y, z)## are understood by default.
 
Note that ##n\cdot f(x,y,z) = \left. \dfrac{d}{dt}\right|_{t=1} \left(t^n f(x,y,z)\right)=\left. \dfrac{d}{dt}\right|_{t=1}f(tx,ty,tz).##
 
PeroK said:
Note that this equation is somewhat sloppy. The arguments of the function ##f## are given on the right-hand side, but the arguments of the functions ##f_x, f_y## and ##f_z## on the left-hand side are not. More precise and logical would be:$$xf_{x}(x, y, x)+yf_{y}(x, y, z)+zf_{z}(x, y, z)=nf(x, y, z)$$Or, in shorthand:$$xf_{x}+yf_{y}+zf_{z}=nf$$Where the arguments ##(x, y, z)## are understood by default.
Ok, I have solved it. I need to defferential f(tx, ty, tz) with respect to t
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...