Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I am looking for a formal way to represent an n-ary relation as a combination of binary relations and logical connectives.

Suppose we have a set [tex]A[/tex], a set [tex]B = \{b: b\subseteq A^2\}[/tex] of binary relations over [tex]A[/tex], and a set of logical connectives [tex]C = \{\neg, \wedge, \vee\}[/tex].

We define a set of propositional variables [tex]V=\{b(a_i, a_j): b \in B, a_i, a_j \in A\}[/tex]. We denote the set of all well-formed formulas over [tex]V \cup C[/tex] as [tex]F[/tex].

Given a propositional function [tex]f \in F[/tex] and using it as an indicator function, we can define an n-ary relation [tex]R=\{(a_0, a_1, ... , a_n) \in A^n | I(f(a_0, a_1, ... , a_n))=1: f \in F\}[/tex].

Does it make any sense?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# N-ary relation as a combination of binary relations

**Physics Forums | Science Articles, Homework Help, Discussion**