MHB Natural deduction (negated implication)

Logic1
Messages
2
Reaction score
0
The proposition ¬(P→Q) is equivalent to ¬P^Q

Does someone maybe have an idea how you can prove (directly) ¬P^Q from ¬(P→Q) by means of natural deduction? I do not manage it.

Thanks in advance!
 
Physics news on Phys.org
I would disagree with the problem. It's true that $\lnot(p\to q) \equiv (p\land\lnot q),$ but it is not true that $\lnot(p\to q)\equiv(\lnot p \land q)$. (A quick truth table will tell you this.) So you need to prove $\lnot(p\to q) \implies (p\land\lnot q)$ and you need to prove $(p\land\lnot q) \implies \lnot(p\to q)$.

Let's take the first one: $\lnot(p\to q) \implies (p\land\lnot q)$. What logical symbols $(\lnot, \land, \lor, \to, \equiv)$ are present/absent in the conclusion versus the premise? Well, we see that there's a $\to$ in the premise, but not in the conclusion, and there's a $\land$ in the conclusion that's not in the premise. So we might well need $\to$ elimination, as well as $\land$ introduction. You see how that can help you structure your proof?
 
Thank Ackbach!

I made a typing error I think. I meant ¬(p→q)⟹(p∧¬q) of course.

To apply the ∧-introduction, I need to get P and ¬Q. But I do not see yet which steps I can start with to make the →-elimination possible (it's clearly not applicable immediately).
 
Logic said:
Thank Ackbach!

I made a typing error I think. I meant ¬(p→q)⟹(p∧¬q) of course.

To apply the ∧-introduction, I need to get P and ¬Q. But I do not see yet which steps I can start with to make the →-elimination possible (it's clearly not applicable immediately).

Right, exactly. I would think about using $\lnot$ elimination. It's a powerful method, because you can construct sub-proofs by assuming anything you want. Don't forget contradiction elimination, where you can conclude anything you want from a contradiction. That's an important proof technique in subproofs. What outline do you have?
 
Here's what I mean by outline, and this is what I would recommend for you to do. Basically, you're going to use $\land$ intro as the main organizing principle.

View attachment 7751
 

Attachments

  • Logic Problem 2018-02-09 Outline.png
    Logic Problem 2018-02-09 Outline.png
    3.3 KB · Views: 148
Ackbach said:
Here's what I mean by outline, and this is what I would recommend for you to do. Basically, you're going to use $\land$ intro as the main organizing principle.

Is step 2 hypothesis for contradiction??
 
solakis said:
Is step 2 hypothesis for contradiction??

Yep, that's right!
 
Ackbach said:
Yep, that's right!

Then on the 6th step we should have ~~P and not on the 8th step
 
solakis said:
Then on the 6th step we should have ~~P and not on the 8th step

Well, that just depends on how many steps it takes you to get a contradiction. No doubt you are more efficient at it than I am.
 
Back
Top