Given two left adjoints [tex]F,H:\mathcal{C}\to\mathcal{D}[/tex] of a functor [tex]G:\mathcal{D}\to\mathcal{C}[/tex], how do we show that [tex]F[/tex] and [tex]H[/tex] are naturally isomorphic? This is my idea so far (I am working with the Hom-set defenition of adjunction):(adsbygoogle = window.adsbygoogle || []).push({});

We need to construct a natural isomorphism [tex]\alpha[/tex]. So, for each [tex]x\in\mathcal{C}[/tex], I need a morphism [tex]\alpha_x:F(x)\to H(x)[/tex]. Suppose we are given the natural isomorphisms [tex]\varphi:\mbox{Hom}(F-,-)\to\mbox{Hom}(-,G-)[/tex] and [tex]\psi:\mbox{Hom}(H-,-)\to\mbox{Hom}(-,G-)[/tex]. Then, I can simply let [tex]\alpha_x := \varphi_{x,Hx}^{-1}\circ\psi_{x,Hx}(1_{Hx})[/tex]. But, I am stuck here. I don't know how to show that for a given morphism [tex]f:x\to y[/tex] in [tex]\mathcal{C}[/tex], [tex]H(f)\circ\alpha_x = \alpha_y\circ F(f)[/tex].

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Natural isomorphism of Left adjoints

Loading...

Similar Threads - Natural isomorphism Left | Date |
---|---|

I Nature of cyclic groups | Feb 21, 2017 |

A How Do Engel and Lie Arise Naturally? | Oct 16, 2016 |

Natural isomorphisms between dual spaces | Apr 8, 2011 |

Natural isomorphisms | Jan 11, 2009 |

Natural isomorphism of VxV* and End(V) | Apr 11, 2005 |

**Physics Forums - The Fusion of Science and Community**