Navier Stokes Equations - Helmholtz-Hodge decomposition and pressure

Click For Summary

Homework Help Overview

The discussion revolves around the Navier-Stokes equations, particularly focusing on the relationship between the Helmholtz-Hodge decomposition and the pressure equation in the context of incompressible fluid flow. Participants explore how these concepts relate to maintaining flow divergence-free conditions.

Discussion Character

  • Conceptual clarification, Assumption checking, Mixed

Approaches and Questions Raised

  • Participants discuss the implications of the Helmholtz-Hodge decomposition and its connection to the pressure equation, questioning how these methods resolve the incompressibility condition. There are attempts to clarify the nature of the pressure equation and its applicability to the Navier-Stokes equations.

Discussion Status

The conversation is ongoing, with various interpretations being explored. Some participants provide insights into the Leray Projection and its relationship to the pressure field, while others express confusion about the connections between the different mathematical frameworks. No consensus has been reached, but several productive lines of inquiry are being pursued.

Contextual Notes

There is mention of specific papers and concepts such as the Clebsch decomposition and the Poisson equation, indicating that participants are navigating complex theoretical frameworks. Some participants express uncertainty about the definitions and applications of the equations discussed.

Bucky
Messages
79
Reaction score
0
Hi, I've been doing some work with the NS equations. I've read a few papers by fellow undergrads that imply a relationship between the helmholtz-hodge decomposition and the pressure equation.

As far as I can see, they're both separate ways of resolving the problem of keeping the flow divergence free. Am I wrong in thinking this?
 
Physics news on Phys.org
What "pressure equation" are you talking about?
Euler's pressure equation? That only holds for certain inviscid flows, most notably for irrotational flow, but an analogue can be made when a Clebsch decomposition* can be made (i.e, when the helicity in closed vortex tubes is zero, rather than just constant (the latter being the general case for inviscid flows).

Anyhow, none of this is applicable for general NS problems; for those, the continuity equation (rather than the condition of a solenoidal field) is an indispensable fourth equation along with the three momentum equations.


Possibly, I've misunderstood what you are referring to; it's been awhile since I was slightly acquainted with all of this.


* The Clebsch decomposition is not a general decomposition like the Helmholtz decomposition, and looks like this:
\vec{v}=\nabla\phi+\alpha\nabla\beta
where alpha and beta are concerned with, and in their form represents a limitation on, the vorticity in the fluid field.
 
Last edited:
sorry I guess my post was rather vague. Let's try again

The Navier Stokes equations for incompressible fluid flow are the following:

\frac{\partial u} {\partial t} = -(u. \nabla )u - \frac {1} {\rho} \nabla p + v \nabla ^2 u + f

\nabla .u = 0

The second equation (the incompressibility equation) is the one I'm curious about.

I've read that this can be resolved through the pressure equation, or through the helmholtz-hodge decomposition.

One paper suggested this was done through substituting a pressure update formula into the divergence formula.

the pressure update formula is
u^{n+1} _{i+1/2,j} = u_{i+1/2,j} - \delta t \frac{1}{\rho} \frac{p_{i+1,j} - pi,j}{\delta x}
u^{n+1} _{i,j+1/2} = u_{i,j+1/2} - \delta t \frac{1}{\rho} \frac{p_{i,j+1} - pi,j}{\delta x}

substituting into the divergence formula gives

\frac{\delta t}{\rho} (\frac{4p_{i,j}-p_{i,j+1}-p_{i+1,j}-p_{i-1,j}-p_{i,j-1}}{\Delta x^2}) = -\frac{u_{i+1/2,j}-u_{i-1/2,j}}{\Delta x} + \frac{v_{i,j+1/2} - v_{i,j-1/2}}{\Delta x}

The helmholtz-hodge decomposition is

<br /> <br /> \xi = \nabla u + \nabla .v +h<br />

where u is a scalar potential field (note that \nabla * (\nabla u) = 0
where v is a vector potential field (note that \nabla .(\nabla * v) = 0
where h is the harmonic vector field (note that \nabla .h = 0

One of the papers I've read states that it uses a Poisson equation to derive a height field, which is subtracted from \xi to yield a divergence free flow (it should be noted that this paper altogether ignores the harmonic vector field). The paper can be found here:
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf


in a few papers I've read the authors have implied a relationship between the pressure and helmholtz-hodge solutions. However I don't see how they're related; in fact in that paper I just mentioned the author doesn't even acknowledge the pressure equation in his statement of the NS equations as pertaining to his solver, so I'm finding difficulty in tieing these things together.

I hope this has made my question more clear, and look forward to any answers.
 
hi. I am interested in the HH decomposition too. Unfortunately, I am stuck on that. Please be in touch if you have found something interesting.
P.S. Are you from CG?
 
From my understanding, the way the second equation is manifests itself onto the pressure field is through the Leray Projection. The Leray Projection, using Hodge orthogonal decomposition, projects the Sobolev space onto the space of divergence free functions (satisfying the second equation). If looking for a weak solution to the problem, then we can integrate by parts and the pressure term becomes the L2 inner product between (p,div(v)). Since we projected v onto the space of divergence free functions this term is zero and the weak statement no longer involves the pressure field. Is that what you are asking about?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 14 ·
Replies
14
Views
8K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K