Undergrad Negative area above x-axis from integrating x^2?

Click For Summary
SUMMARY

The discussion clarifies the misconception regarding the sign of integrals and their relation to area. Specifically, the integral ##\int_3^{-1} x^2 \, dx## yields a negative value due to the limits of integration being in the wrong order. The correct formulation should be ##\int_{-1}^3 x^2 \, dx## to obtain a positive area. It is emphasized that while integrals can be negative, areas are always positive, necessitating careful consideration of integration limits and the orientation of the area being calculated.

PREREQUISITES
  • Understanding of definite integrals and their properties
  • Familiarity with anti-derivatives and the Fundamental Theorem of Calculus
  • Knowledge of the Cartesian coordinate system and orientation of areas
  • Basic grasp of trigonometric functions and their integrals
NEXT STEPS
  • Study the Fundamental Theorem of Calculus in detail
  • Learn about the properties of definite integrals and their geometric interpretations
  • Explore the concept of area under curves using piecewise functions
  • Investigate the implications of integrating functions with respect to different limits
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking to deepen their understanding of integrals and their geometric interpretations.

member 731016
TL;DR
I am interested whether we can get a negative area above the x-axis when the lower limit of integration is larger than the upper limit of integration
Suppose the following integration,

##\int_3^{-1} x^2 \, dx = \frac{1}{3}(-1)^3 - \frac{1}{3}(3)^3 = -\frac{28}{3}##

However, if we have a look at the graph,
1681195465513.png

The area between ##x = 3## and ##x = -1## is above the x-axis so should be positive. Dose anybody please know why the I am getting negative area from the integral?

Many thanks!
 
Physics news on Phys.org
Integrals are oriented areas. ##\int_a^b f(x)\,dx =-\int_b^a f(x)\,dx.## So it has an opposite sign if you integrate from left to right or from right to left.
 
  • Like
Likes vanhees71 and member 731016
fresh_42 said:
Integrals are oriented areas. ##\int_a^b f(x)\,dx =-\int_b^a f(x)\,dx.## So it has an opposite sign if you integrate from left to right or from right to left.
Thank you for your reply @fresh_42 !

That is very helpful! Does this mean since the integral is negative, then the area is negative, so we can have negative area above the x-axis (without going below the x-axis)?

Many thanks!
 
ChiralSuperfields said:
Suppose the following integration, ##\int_3^{-1} x^2 \, dx = \frac{1}{3}(-1)^3 - \frac{1}{3}(3)^3 = -\frac{28}{3}##
ChiralSuperfields said:
Does this mean since the integral is negative, then the area is negative, so we can have negative area above the x-axis (without going below the x-axis)?
No. The left-most integral above has the limits of integration in the wrong order, so the value of the integral will be negative, as you found. If you rewrite the limits in the proper order -- left to right or bottom to top, then you'll get a positive value.

Your integral should have its limits like so: ##\int_{-1}^3 x^2 \, dx##.
 
  • Like
Likes member 731016
ChiralSuperfields said:
Thank you for your reply @fresh_42 !

That is very helpful! Does this mean since the integral is negative, then the area is negative, so we can have negative area above the x-axis (without going below the x-axis)?

Many thanks!
It means that we need to be very careful when we consider the value of an integral as an area.

If ##F(x)## is the anti-derivative of ##f(x),## i.e. ##F(x)'=f(x)## or ##\int f(x)\,dx=F(x), ## then
$$
\int_a^b f(x)\,dx=F(b)-F(a)\text{ or } \int_a^a f(x)\,dx=\int_a^bf(x)\,dx +\int_b^a f(x)\,dx= 0
$$

The integral also makes a difference between above and below the ##x##-axis.

Example:
$$
\int_{-90°}^{90°} \sin(x)\,dx =\left[-\cos(x)\right]_{-90°}^{90°}=- \cos( 90°) -(- \cos (-90°) )=-0+(-0)=0
$$
But the area is not zero, it is
\begin{align*}
&\text{Area below the sine curve from }-90°\text{ to } +90°=\left|\int_{-90°}^{0°} \sin(x)\,dx\right|+\left|\int_{0°}^{90°} \sin(x)\,dx\right|\\
&=|-\cos(0°)+\cos(-90°)|+|-\cos(90°)+\cos(0°)|\\
&=|-1+0|+|-0+1|=|-1|+|1|=2
\end{align*}

Areas are always positive, integrals not necessarily. The sign of an integral depends on which quadrant of the ##(x,y)##-plane we are in, and whether our integration is clockwise or counterclockwise. To calculate an area, we have to split an integral into portions. Say ##a < c <b## and ##f(c)=0.## then the area below ##f(x)## is given as
$$
A=\left|\int_a^c f(x)\,dx \right|+\left| \int_c^b f(x)\,dx\right|
$$

There is just a difference between an area and an integral.
 
  • Like
Likes member 731016
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K