Net efficiency of a cascaded Carnot Engine and Fridge

AI Thread Summary
The discussion focuses on the net efficiency of a cascaded Carnot engine and fridge, exploring the relationship between heat transfer and work output. The engine operates between temperatures T_h and T_l, with work output expressed as W_out = Q_h(1 - T_r/T_h). The fridge's work consumption is defined as W_r = Q_in,fridge(T_l/T_r - 1), where Q_in,fridge is questioned. Participants agree that assuming Q_in,fridge = Q_l aligns with energy conservation principles, allowing the cold reservoir to maintain a steady temperature. This assumption leads to significant insights regarding the available work ratio, W^available/Q_h.
baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
The efficiency of a heat engine is to be improved by lowering the temperature of its low temperature reservoir to a value ##T_r##, below the environmental temperature ##T_l## by means of a refrigerator. The refrigerator consumes part of the work produced by the heat engine. Assume that both the heat engine and the refrigerator operate reversibly. Calculate the ratio of the net (available) work to the heat ##Q_h## supplied by the heat equation at temperature ##T_h##. Is it possible to obtain a higher net conversion energy efficiency this way?
Relevant Equations
$$ S_{in} = \frac { Q_{in} } { T_{in} } = S_{out} = \frac { Q_{out} } { T_{out} } $$
$$W_{engine} = Q_{in} - Q_{out}$$
$$W_{fridge} = Q_{out} - Q_{in}$$
Here is a diagram of my interpretation of the problem:

pf-engine cascade diagram_1.jpg

Where I'm thinking that the engine originally takes heat from ##T_h## to ##T_l##, in which case ## \frac { Q_{h} } { T_{h} } = \frac { Q_{l} } { T_{l} } ## and ## W_{out} = Q_{in} - Q_{out} = Q_h \left( 1 - \frac {T_l} {T_h} \right) ##.

Then I suppose that because ##T_l## is cooled to ##T_r##, I get ## W_{out} = Q_h \left( 1 - \frac {T_r} {T_h} \right) ##.

The fridge itself consumes a certain amount of work ## W_r = Q_{out, fridge} - Q_{in, fridge} ##. And because ## \frac { Q_{in, fridge} } { T_{r} } = \frac { Q_{out, fridge} } { T_{l} } ## so I can write ##W_r = Q_{in, fridge} \left( \frac {T_l} {T_r} - 1 \right) ##.

And now just trying to get $$ \frac {W^{available} } {Q_h} = \frac {W_{out} - W_r } {Q_h} = \frac { Q_h \left(1 - \frac {T_r} {T_h} \right) - Q_{in, fridge} \left( \frac {T_l} {T_r} - 1 \right) } {Q_h}$$.

But my problem is that I don't know what ##Q_{in, fridge}## is. An optimistic guess I have is that ##Q_{in, fridge} = Q_l ## by sort of applying energy conservation to the reservoir the same way we did to the engines and fridges to get the work delivered or work consumed, but I'm not sure that works that easily in the case of a reservoir? Thanks in advance for the feedback.
 
Physics news on Phys.org
So far, your work looks good to me. And I also interpret the problem as implying that we should assume ##Q_{in, fridge} = Q_l##. That way, whatever heat is dumped into the cold reservoir at temperature ##T_r## by the heat engine is removed from the cold reservoir by the fridge and dumped into the environment. So, the cold reservoir can maintain a steady temperature even if the cold reservoir is not huge. Also, the assumption that ##Q_{in, fridge} = Q_l## leads to an interesting result for ##\large \frac{W^{available}}{Q_h}##.
 
  • Like
Likes baseballfan_ny
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top