Net efficiency of a cascaded Carnot Engine and Fridge

Click For Summary
The discussion focuses on the net efficiency of a cascaded Carnot engine and fridge, exploring the relationship between heat transfer and work output. The engine operates between temperatures T_h and T_l, with work output expressed as W_out = Q_h(1 - T_r/T_h). The fridge's work consumption is defined as W_r = Q_in,fridge(T_l/T_r - 1), where Q_in,fridge is questioned. Participants agree that assuming Q_in,fridge = Q_l aligns with energy conservation principles, allowing the cold reservoir to maintain a steady temperature. This assumption leads to significant insights regarding the available work ratio, W^available/Q_h.
baseballfan_ny
Messages
92
Reaction score
23
Homework Statement
The efficiency of a heat engine is to be improved by lowering the temperature of its low temperature reservoir to a value ##T_r##, below the environmental temperature ##T_l## by means of a refrigerator. The refrigerator consumes part of the work produced by the heat engine. Assume that both the heat engine and the refrigerator operate reversibly. Calculate the ratio of the net (available) work to the heat ##Q_h## supplied by the heat equation at temperature ##T_h##. Is it possible to obtain a higher net conversion energy efficiency this way?
Relevant Equations
$$ S_{in} = \frac { Q_{in} } { T_{in} } = S_{out} = \frac { Q_{out} } { T_{out} } $$
$$W_{engine} = Q_{in} - Q_{out}$$
$$W_{fridge} = Q_{out} - Q_{in}$$
Here is a diagram of my interpretation of the problem:

pf-engine cascade diagram_1.jpg

Where I'm thinking that the engine originally takes heat from ##T_h## to ##T_l##, in which case ## \frac { Q_{h} } { T_{h} } = \frac { Q_{l} } { T_{l} } ## and ## W_{out} = Q_{in} - Q_{out} = Q_h \left( 1 - \frac {T_l} {T_h} \right) ##.

Then I suppose that because ##T_l## is cooled to ##T_r##, I get ## W_{out} = Q_h \left( 1 - \frac {T_r} {T_h} \right) ##.

The fridge itself consumes a certain amount of work ## W_r = Q_{out, fridge} - Q_{in, fridge} ##. And because ## \frac { Q_{in, fridge} } { T_{r} } = \frac { Q_{out, fridge} } { T_{l} } ## so I can write ##W_r = Q_{in, fridge} \left( \frac {T_l} {T_r} - 1 \right) ##.

And now just trying to get $$ \frac {W^{available} } {Q_h} = \frac {W_{out} - W_r } {Q_h} = \frac { Q_h \left(1 - \frac {T_r} {T_h} \right) - Q_{in, fridge} \left( \frac {T_l} {T_r} - 1 \right) } {Q_h}$$.

But my problem is that I don't know what ##Q_{in, fridge}## is. An optimistic guess I have is that ##Q_{in, fridge} = Q_l ## by sort of applying energy conservation to the reservoir the same way we did to the engines and fridges to get the work delivered or work consumed, but I'm not sure that works that easily in the case of a reservoir? Thanks in advance for the feedback.
 
Physics news on Phys.org
So far, your work looks good to me. And I also interpret the problem as implying that we should assume ##Q_{in, fridge} = Q_l##. That way, whatever heat is dumped into the cold reservoir at temperature ##T_r## by the heat engine is removed from the cold reservoir by the fridge and dumped into the environment. So, the cold reservoir can maintain a steady temperature even if the cold reservoir is not huge. Also, the assumption that ##Q_{in, fridge} = Q_l## leads to an interesting result for ##\large \frac{W^{available}}{Q_h}##.
 
  • Like
Likes baseballfan_ny
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
14
Views
1K
  • · Replies 10 ·
Replies
10
Views
803
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
764