A New Adler book on GR: Why do these coefficients go to zero?

Click For Summary
The discussion centers on a specific point from page 73 of a new Adler book regarding why mixed derivatives with affine connections vanish in a certain term. This vanishing is crucial for demonstrating that connections are not tensors. The terms involving second-order products of infinitesimal coordinate displacements are dropped, as only first-order terms are relevant for the analysis. The reasoning behind this simplification is clarified, leading to a better understanding of the mathematical concepts involved. The conversation concludes with appreciation for the explanation provided.
peasg
Messages
2
Reaction score
4
1722552254555.png

This is page 73 of the book. As you can see, the mixed derivatives with the affine connections vanish in the second term. Why does that happen? This is used to prove that the connections are not a tensor, and i figured you could also reason it out even without making those terms vanish.

OBS: The derivatives are avaliated at P, for the reason that this is obtained via a taylor series of the transformation coefficients.
 
  • Like
Likes PhDeezNutz and jbergman
Physics news on Phys.org
peasg said:
View attachment 349323
This is page 73 of the book. As you can see, the mixed derivatives with the affine connections vanish in the second term. Why does that happen?
The terms ##\left( \dfrac{\partial^2 \bar x^j}{\partial x^l \partial x^i } \right)_P \Gamma^i_{pq} V^q dx^l dx^p## have been dropped because they contain products ##dx^l dx^p##. Therefore, these terms are second-order in the infinitesimal coordinate displacements. Only terms up to first order need to be kept.
 
  • Like
Likes jbergman, PhDeezNutz, Nugatory and 1 other person
TSny said:
The terms ##\left( \dfrac{\partial^2 \bar x^j}{\partial x^l \partial x^i } \right)_P \Gamma^i_{pq} V^q dx^l dx^p## have been dropped because they contain products ##dx^l dx^p##. Therefore, these terms are second-order in the infinitesimal coordinate displacements. Only terms up to first order need to be kept.
Oh, that makes perfect sense. Thank you for your time!
 
  • Like
Likes PhDeezNutz and TSny
I've been thinking some more about the Hawking - Penrose Singularity theorem and was wondering if you could help me gain a better understanding of the assumptions they made when they wrote it, in 1970. In Hawking's book, A Brief History of Time (chapter 3, page 25) he writes.... In 1965 I read about Penrose’s theorem that any body undergoing gravitational collapse must eventually form a singularity. I soon realized that if one reversed the direction of time in Penrose’s theorem, so that...

Similar threads

  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
5K
Replies
11
Views
2K
  • · Replies 21 ·
Replies
21
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
Replies
5
Views
2K
Replies
14
Views
3K
  • · Replies 9 ·
Replies
9
Views
5K