MHB Newbie here with question on Complex components

THAGONZ
Messages
2
Reaction score
0
Hello all,

I am new here and very new to trig. I can't seem to figure out how this equation works out. I was wondering if someone could help me out with the long equation to get this answer. I know this is probably very simple to most of you but I am really stuck here...

Thanks in advance!(cos-isin)*(cos-isin)

(0.00179-i0.00358)*(0.29-i0.957) = -0.003-i0.003
 
Mathematics news on Phys.org
hi! (Wave) welcome to mhb. like your username.

was that all you were given in the question?
 
ineedhelpnow said:
hi! (Wave) welcome to mhb. like your username.

was that all you were given in the question?

Hi, Thank you for the reply..

It is actually a much longer equation...

$0.004[cos(-63.4^{\circ})+isin(-63.4^{\circ})]$=0.00179-i0.00358

then using Discrete Fourier Transform you get
$e-i2pi(29.84*10^6)*(1/5.12*10^6)*-7$= 0.29 – i0.957

so now I am trying to figure out how $(0.00179-i0.00358)*(0.29-i0.957)$ = -0.003-i0.003
 
Last edited:
but a dollar sign at the beginning of your equations and at the end. I am having some trouble reading it.
 
THAGONZ said:
so now I am trying to figure out how $(0.00179-i0.00358)*(0.29-i0.957)$ = -0.003-i0.003
Multiply out the brackets in the usual way (remembering that $i^2=-1$) and then collect the real and imaginary terms together. That gives $$(0.00179-i0.00358)*(0.29-i0.957) = 0.00179*0.29 + 0.00358*0.957 -i0.00179*0.957 - i0.00358*0.29.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top