Non-continuous integrals and discrete variables

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the average value of a function defined over a specific interval, particularly in the context of quantum physics homework. Participants explore both continuous and discrete interpretations of the variable \(x\) and the implications for calculating the average value.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a function \(f(x)\) and seeks guidance on calculating the average value \(\bar{x}\) using the formula involving integrals.
  • Concerns are raised about the appropriateness of changing the limits of integration due to the function being zero outside the interval [0, 10].
  • Another participant suggests that the integral can be simplified to the interval [0, 10] for both the numerator and the denominator, but acknowledges that the numerator involves \(x\) multiplied by \(f(x)\).
  • There is confusion regarding the notation \(E(X)\) and its relevance to the problem, with some participants asserting that the original formula for \(\bar{x}\) must be used.
  • One participant emphasizes the need to normalize the function since the integral does not equal 1, indicating that the expectation value calculation requires normalization.

Areas of Agreement / Disagreement

Participants express differing views on the correct approach to the problem, particularly regarding the use of the average value formula and the necessity of normalization. No consensus is reached on the best method to proceed with the calculations.

Contextual Notes

Participants note that the function \(f(x)\) is zero outside the interval [0, 10], which affects the evaluation of the integrals. There is also mention of the integral not being normalized, which introduces additional considerations for calculating the expectation value.

skate_nerd
Messages
174
Reaction score
0
Quantum Phys Homework:
I am given a function:
$$f(x)=\frac{1}{10}(10-x)^2\,;\,0\leq{x}\leq{10}$$
and
$$f(x)=0$$
for all other \(x\).
I need to find the average value of \(x\) where
$$\bar{x}=\frac{\int_{-\infty}^{\infty}x\,f(x)\,dx}{\int_{-\infty}^{\infty}f(x)\,dx}$$
I am not really even sure where to start with this. If the denominator is equal to zero for every value through the integral except for 0 to 10, would I just be able to change it (just the denominator) to
$$\int_{0}^{10}f(x)\,dx$$
I don't think the same would apply for the numerator, because the function is multiplied by \(x\), making it a different function, which is possibly still integratable from \(-\infty\) to \(\infty\).
But wait, there's more. Part (b) is asking to suppose that the variable \(x\) is discrete rather than continuous. Assume \(\Delta{x}=1\) so that \(x\) takes on only integral values 0, 1, 2, ..., 10. Then I need to compute \(\bar{x}\) again and compare to the first part.
So I think after doing part (a), I could maybe know how to attack part (b) if I knew what a discrete variable was...I've never taken a class that ever dealt with discrete variables so I am kind of in the dark here. Any guidance would be very appreciated.
 
Physics news on Phys.org
skatenerd said:
Quantum Phys Homework:
I am given a function:
$$f(x)=\frac{1}{10}(10-x)^2\,;\,0\leq{x}\leq{10}$$
and
$$f(x)=0$$
for all other \(x\).
I need to find the average value of \(x\) where
$$\bar{x}=\frac{\int_{-\infty}^{\infty}x\,f(x)\,dx}{\int_{-\infty}^{\infty}f(x)\,dx}$$
I am not really even sure where to start with this. If the denominator is equal to zero for every value through the integral except for 0 to 10, would I just be able to change it (just the denominator) to
$$\int_{0}^{10}f(x)\,dx$$
I don't think the same would apply for the numerator, because the function is multiplied by \(x\), making it a different function, which is possibly still integratable from \(-\infty\) to \(\infty\).
But wait, there's more. Part (b) is asking to suppose that the variable \(x\) is discrete rather than continuous. Assume \(\Delta{x}=1\) so that \(x\) takes on only integral values 0, 1, 2, ..., 10. Then I need to compute \(\bar{x}\) again and compare to the first part.
So I think after doing part (a), I could maybe know how to attack part (b) if I knew what a discrete variable was...I've never taken a class that ever dealt with discrete variables so I am kind of in the dark here. Any guidance would be very appreciated.

First of all, \displaystyle \begin{align*} E(X) = \int_{-\infty}^{\infty}{x\,f(x)\,dx} \end{align*}, not \displaystyle \begin{align*} \frac{\int_{-\infty}^{\infty}{x\,f(x)\,dx}}{\int_{-\infty}^{\infty}{f(x)\,dx}} \end{align*}, and then since the integral will be 0 everywhere where the function is 0, this would be equal in this case to \displaystyle \begin{align*} \int_0^{10}{x\,f(x)\,dx} = \int_0^{10}{x\left[ \frac{1}{10}(10 - x)^2 \right] \, dx} \end{align*}.

Go from here.
 
I'm sorry, I don't know what \(E(X)\) means. And the problem clearly states that
$$\bar{x} = \frac{\int_{-\infty}^{\infty}xf(x)dx}{\int_{-\infty}^{\infty}f(x)dx}$$
so I don't think I can use what you just gave to go about solving it.
 
Last edited:
Yes you can, your f(x) is 0 everywhere other than between 0 to 10, and so must be \displaystyle \begin{align*} x f(x) \end{align*}.
 
Prove It said:
First of all, \displaystyle \begin{align*} E(X) = \int_{-\infty}^{\infty}{x\,f(x)\,dx} \end{align*}, not \displaystyle \begin{align*} \frac{\int_{-\infty}^{\infty}{x\,f(x)\,dx}}{\int_{-\infty}^{\infty}{f(x)\,dx}} \end{align*}, and then since the integral will be 0 everywhere where the function is 0, this would be equal in this case to \displaystyle \begin{align*} \int_0^{10}{x\,f(x)\,dx} = \int_0^{10}{x\left[ \frac{1}{10}(10 - x)^2 \right] \, dx} \end{align*}.

Go from here.

skatenerd said:
I'm sorry, I don't know what \(E(X)\) means. And the problem clearly states that
$$\bar{x} = \frac{\int_{-\infty}^{\infty}xf(x)dx}{\int_{-\infty}^{\infty}f(x)dx}$$
so I don't think I can use what you just gave to go about solving it.

As $\displaystyle \int_{- \infty}^{ \infty}f(x) \, dx \not=1$, this distribution function must be normalized. Prove It would be correct if the function was already normalized, but since it is not (the integral in question is equal to $100/3$), you must normalize to find the expectation value of $x$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K