MHB Non-dimensional differential equation 2

AI Thread Summary
The discussion centers on a non-dimensional differential equation for height, specifically h(μ) = (1/μ) - (1/μ²) log_e(1+μ) for small values of μ. Participants express confusion about how to begin solving the problem, particularly in determining the non-dimensional time for a body to fall from the highest point to the ground and its speed upon return. There is a suggestion that crucial information may be missing from the problem statement, which hinders progress. Additionally, it is noted that this problem resembles previous threads initiated by the same user. Clarification on the problem's parameters is necessary for further analysis.
ra_forever8
Messages
106
Reaction score
0
Consider non-dimensional equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} \log_e(1+\mu) \end{equation}
$0<\mu\ll 1.$
Determine to $O(\mu)$, the (non-dimensional) time for the body to travel from the highest point to the ground, and determine an estimate for the (non-dimensional) speed of the body when it returns to the ground, again to $O(\mu)$.

=> I really don't how to start this question. please help me.
 
Last edited:
Mathematics news on Phys.org
grandy said:
Consider non-dimensional equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} \log_e(1+\mu) \end{equation}
$0<\mu\ll 1.$
Determine to $O(\mu)$, the (non-dimensional) time for the body to travel from the highest point to the ground, and determine an estimate for the (non-dimensional) speed of the body when it returns to the ground, again to $O(\mu)$.

=> I really don't how to start this question. please help me.

You do not have enough information to say anything about the time.
Is there some information missing from the problem statement?

Btw, this problem looks *a lot* like 2 other threads you started.
Are they perhaps all about the same problem?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top