Nonhomogeneous System: Similar Coefficients & Solutions?

kosovo dave
Gold Member
Messages
34
Reaction score
0
This might belong in the HW section, but since it's specific to Linear Algebra I posted it here.

Alright, so we have a homogeneous system of 8 equations in 10 variables (an 8 x 10 matrix, let's call it A). We have found two solutions that are not multiples of each other (lets call them a and b), and every other solution is a linear combination of them. Can you be certain that any nonhomogeneous equation with the same coefficients has a solution?

I want to say yes, but I'm not sure why. Here's the stuff I know:
- Our solution for the homogeneous system is span{a, b}.
- Since there are free variables/the null space is not just 0 we know there are nontrivial solutions.
- Dim(Null(A))=8
 
Physics news on Phys.org
Try constructing a non-homogeneous equation with those two coefficients that does not have a solution - consider that the inhomogeniety can be anything.
 
I don't know why, but I'm still having a hard time with this :/ Could you give me another hint?

Here's what I tried:
Ax=c

if c= (0,0,1,0,0,0,0,0,0,0) I think the system would be inconsistent because row 3 of the augmented matrix would be all 0's and then a nonzero to the right of the vertical line. Does that work?
 
Well, how would you normally find the solution to a non-homogeneous system knowing the solution to the homogeneous one?
 
augment the nonhomogeneous system with a solution from the homogeneous one?
 
kosovo dave said:
Can you be certain that any nonhomogeneous equation with the same coefficients has a solution?
For a matrix A and a column vector x the result of Ax can be viewed as a linear combination of the column vectors of A where the coefficients in the linear combination are the entries of x. So if Ax = b has a solution, the vector b must be in the span of the column vectors.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top