MHB Norm of a Linear Transformation .... Junnheng Proposition 9.2.3 .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Hugo D. Junghenn's book: "A Course in Real Analysis" ...

I am currently focused on Chapter 9: "Differentiation on $$\mathbb{R}^n$$"

I need some help with the proof of Proposition 9.2.3 ...

Proposition 9.2.3 and the preceding relevant Definition 9.2.2 read as follows:
https://www.physicsforums.com/attachments/7889
View attachment 7890
In the above proof we read the following:

" ... ... If $$\mathbf{x} \neq \mathbf{0}$$ then $$\| \mathbf{x} \|^{-1} \mathbf{x}$$ has a norm $$1$$, hence


$$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le 1$$ ... ... "
Now I know that $$T( c \mathbf{x} ) = c T( \mathbf{x} ) $$... BUT ...... how do we know that this works "under the norm sign" ...... that is, how do we know ...$$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| $$
... and further ... how do we know that ...
$$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le 1 $$Help will be appreciated ...

Peter
 
Physics news on Phys.org
Peter said:
I know that $$T( c \mathbf{x} ) = c T( \mathbf{x} ) $$

... BUT ...

... how do we know that this works "under the norm sign" ...

... that is, how do we know ...

$$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| $$
If you make the substitution $c = \| \mathbf{x} \|^{-1}$ in the equation $\| c \mathbf{y}\| = c\| \mathbf{y}\|$ (where $c$ is a positive constant), then it becomes $\| \| \mathbf{x} \|^{-1} \mathbf{y}\| = \| \mathbf{x} \|^{-1}\| \mathbf{y}\|$. Do that when $\mathbf{y} = T\mathbf{x}$, to get $\| \|T( \mathbf{x} \|^{-1} \mathbf{x})\| = \| \| \mathbf{x} \|^{-1}(T \mathbf{x})\| = \| \mathbf{x} \|^{-1}\|T \mathbf{x}\|$.

Peter said:
... and further ... how do we know that ...

$$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le 1 $$
That is a mistake. It should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$.
 
Opalg said:
If you make the substitution $c = \| \mathbf{x} \|^{-1}$ in the equation $\| c \mathbf{y}\| = c\| \mathbf{y}\|$ (where $c$ is a positive constant), then it becomes $\| \| \mathbf{x} \|^{-1} \mathbf{y}\| = \| \mathbf{x} \|^{-1}\| \mathbf{y}\|$. Do that when $\mathbf{y} = T\mathbf{x}$, to get $\| \|T( \mathbf{x} \|^{-1} \mathbf{x})\| = \| \| \mathbf{x} \|^{-1}(T \mathbf{x})\| = \| \mathbf{x} \|^{-1}\|T \mathbf{x}\|$.That is a mistake. It should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$.
Thanks Opalg ...

Appreciate your help ...

Peter
 
Opalg said:
If you make the substitution $c = \| \mathbf{x} \|^{-1}$ in the equation $\| c \mathbf{y}\| = c\| \mathbf{y}\|$ (where $c$ is a positive constant), then it becomes $\| \| \mathbf{x} \|^{-1} \mathbf{y}\| = \| \mathbf{x} \|^{-1}\| \mathbf{y}\|$. Do that when $\mathbf{y} = T\mathbf{x}$, to get $\| \|T( \mathbf{x} \|^{-1} \mathbf{x})\| = \| \| \mathbf{x} \|^{-1}(T \mathbf{x})\| = \| \mathbf{x} \|^{-1}\|T \mathbf{x}\|$.That is a mistake. It should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$.

Hi Opalg ...

Just realized that I don't fully understand why $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$ ...

Can you please help further and demonstrate why this is the case ...

Peter
 
Peter said:
Hi Opalg ...

Just realized that I don't fully understand why $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$ ...

Can you please help further and demonstrate why this is the case ...

Peter
The definition $\|T\| = \sup\{\|T \mathbf{y} \| : \| \mathbf{y} \| = 1\}$ says that if $\| \mathbf{y} \| = 1$ then $\|T \mathbf{y} \| \leqslant \|T\|$. But $ \| \mathbf{x} \|^{-1} \mathbf{x} $ has norm $1$, so you can substitute that vector for $ \mathbf{y}$, to get $\bigl\|T( \| \mathbf{x} \|^{-1} \mathbf{x} )\bigr\| \leqslant \|T\|$.
 
Opalg said:
The definition $\|T\| = \sup\{\|T \mathbf{y} \| : \| \mathbf{y} \| = 1\}$ says that if $\| \mathbf{y} \| = 1$ then $\|T \mathbf{y} \| \leqslant \|T\|$. But $ \| \mathbf{x} \|^{-1} \mathbf{x} $ has norm $1$, so you can substitute that vector for $ \mathbf{y}$, to get $\bigl\|T( \| \mathbf{x} \|^{-1} \mathbf{x} )\bigr\| \leqslant \|T\|$.
Hi Opalg ... thanks again for the help ...

Peter
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top