Norm of a Linear Transformation .... Junnheng Proposition 9.2.3 .... ....

Click For Summary

Discussion Overview

The discussion revolves around the proof of Proposition 9.2.3 from Hugo D. Junghenn's "A Course in Real Analysis," specifically focusing on the properties of norms in the context of linear transformations. Participants seek clarification on the application of norms and the implications of certain substitutions within the proof.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Peter questions how the equality $$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \|$$ holds under the norm sign, suggesting a need for clarification on this property.
  • Peter proposes a substitution of $$c = \| \mathbf{x} \|^{-1}$$ in the equation $$\| c \mathbf{y} \| = c \| \mathbf{y} \|$$ to derive relationships involving the transformation $$T$$ and its norm.
  • There is a correction noted by Peter regarding the inequality, stating it should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\|$$ instead of the previously mentioned form.
  • Another participant explains that the definition of the operator norm $$\|T\| = \sup\{\|T \mathbf{y} \| : \| \mathbf{y} \| = 1\}$$ supports the inequality, as $$\| \mathbf{x} \|^{-1} \mathbf{x}$$ has a norm of 1, allowing substitution into the definition.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the application of norms and the validity of certain steps in the proof. While some points are clarified, the discussion does not reach a consensus on all aspects, particularly regarding the implications of the norm properties.

Contextual Notes

The discussion highlights potential limitations in understanding the properties of norms in linear transformations and the assumptions underlying the substitutions made in the proof. There are unresolved mathematical steps that participants are attempting to clarify.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Hugo D. Junghenn's book: "A Course in Real Analysis" ...

I am currently focused on Chapter 9: "Differentiation on $$\mathbb{R}^n$$"

I need some help with the proof of Proposition 9.2.3 ...

Proposition 9.2.3 and the preceding relevant Definition 9.2.2 read as follows:
https://www.physicsforums.com/attachments/7889
View attachment 7890
In the above proof we read the following:

" ... ... If $$\mathbf{x} \neq \mathbf{0}$$ then $$\| \mathbf{x} \|^{-1} \mathbf{x}$$ has a norm $$1$$, hence


$$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le 1$$ ... ... "
Now I know that $$T( c \mathbf{x} ) = c T( \mathbf{x} ) $$... BUT ...... how do we know that this works "under the norm sign" ...... that is, how do we know ...$$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| $$
... and further ... how do we know that ...
$$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le 1 $$Help will be appreciated ...

Peter
 
Physics news on Phys.org
Peter said:
I know that $$T( c \mathbf{x} ) = c T( \mathbf{x} ) $$

... BUT ...

... how do we know that this works "under the norm sign" ...

... that is, how do we know ...

$$\| \mathbf{x} \|^{-1} \| T \mathbf{x} \| = \| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| $$
If you make the substitution $c = \| \mathbf{x} \|^{-1}$ in the equation $\| c \mathbf{y}\| = c\| \mathbf{y}\|$ (where $c$ is a positive constant), then it becomes $\| \| \mathbf{x} \|^{-1} \mathbf{y}\| = \| \mathbf{x} \|^{-1}\| \mathbf{y}\|$. Do that when $\mathbf{y} = T\mathbf{x}$, to get $\| \|T( \mathbf{x} \|^{-1} \mathbf{x})\| = \| \| \mathbf{x} \|^{-1}(T \mathbf{x})\| = \| \mathbf{x} \|^{-1}\|T \mathbf{x}\|$.

Peter said:
... and further ... how do we know that ...

$$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le 1 $$
That is a mistake. It should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$.
 
Opalg said:
If you make the substitution $c = \| \mathbf{x} \|^{-1}$ in the equation $\| c \mathbf{y}\| = c\| \mathbf{y}\|$ (where $c$ is a positive constant), then it becomes $\| \| \mathbf{x} \|^{-1} \mathbf{y}\| = \| \mathbf{x} \|^{-1}\| \mathbf{y}\|$. Do that when $\mathbf{y} = T\mathbf{x}$, to get $\| \|T( \mathbf{x} \|^{-1} \mathbf{x})\| = \| \| \mathbf{x} \|^{-1}(T \mathbf{x})\| = \| \mathbf{x} \|^{-1}\|T \mathbf{x}\|$.That is a mistake. It should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$.
Thanks Opalg ...

Appreciate your help ...

Peter
 
Opalg said:
If you make the substitution $c = \| \mathbf{x} \|^{-1}$ in the equation $\| c \mathbf{y}\| = c\| \mathbf{y}\|$ (where $c$ is a positive constant), then it becomes $\| \| \mathbf{x} \|^{-1} \mathbf{y}\| = \| \mathbf{x} \|^{-1}\| \mathbf{y}\|$. Do that when $\mathbf{y} = T\mathbf{x}$, to get $\| \|T( \mathbf{x} \|^{-1} \mathbf{x})\| = \| \| \mathbf{x} \|^{-1}(T \mathbf{x})\| = \| \mathbf{x} \|^{-1}\|T \mathbf{x}\|$.That is a mistake. It should read $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$.

Hi Opalg ...

Just realized that I don't fully understand why $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$ ...

Can you please help further and demonstrate why this is the case ...

Peter
 
Peter said:
Hi Opalg ...

Just realized that I don't fully understand why $$\| T ( \| \mathbf{x} \|^{-1} \mathbf{x} ) \| \le \|T\| $$ ...

Can you please help further and demonstrate why this is the case ...

Peter
The definition $\|T\| = \sup\{\|T \mathbf{y} \| : \| \mathbf{y} \| = 1\}$ says that if $\| \mathbf{y} \| = 1$ then $\|T \mathbf{y} \| \leqslant \|T\|$. But $ \| \mathbf{x} \|^{-1} \mathbf{x} $ has norm $1$, so you can substitute that vector for $ \mathbf{y}$, to get $\bigl\|T( \| \mathbf{x} \|^{-1} \mathbf{x} )\bigr\| \leqslant \|T\|$.
 
Opalg said:
The definition $\|T\| = \sup\{\|T \mathbf{y} \| : \| \mathbf{y} \| = 1\}$ says that if $\| \mathbf{y} \| = 1$ then $\|T \mathbf{y} \| \leqslant \|T\|$. But $ \| \mathbf{x} \|^{-1} \mathbf{x} $ has norm $1$, so you can substitute that vector for $ \mathbf{y}$, to get $\bigl\|T( \| \mathbf{x} \|^{-1} \mathbf{x} )\bigr\| \leqslant \|T\|$.
Hi Opalg ... thanks again for the help ...

Peter
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 24 ·
Replies
24
Views
5K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K