roldy
- 206
- 2
Homework Statement
Find the normal and shear components (\vec{\sigma}_{n},\vec{\tau}) of the stress vector on the surface ABCD.
Given:
State of stress at a point
\sigma_{xx}=3
\sigma_{yy}=0
\sigma_{zz}=-1
\sigma_{xy}=-\sqrt{2}
\sigma_{xz}=1000
Unit normal:
\widehat{n}=\frac{1}{\sqrt{2}}\widehat{i}+\frac{1}{\sqrt{2}}\widehat{j}+0\widehat{k}
Homework Equations
\vec{\sigma}_{n}=\vec{t}\cdot\widehat{n}
\vec{t}=\vec{\sigma}_{n}+\vec{\tau}
The Attempt at a Solution
First I take the stress matrix and multiply it by the unit normal to find the traction components
\sigma = \left[\begin{matrix} <br /> 3 & -\sqrt{2} & 1000 \\<br /> -\sqrt{2} & 0 & -\sqrt{2} \\<br /> 1000 & -\sqrt{2} & -1 \\<br /> \end{matrix}<br /> \right]
\left[\begin{matrix}<br /> 3 & -\sqrt{2} & 1000 \\<br /> -\sqrt{2} & 0 & -\sqrt{2} \\<br /> 1000 & -\sqrt{2} & -1 \\<br /> \end{matrix}<br /> \right]<br /> \left[\begin{matrix}<br /> \frac{1}{-\sqrt{2}} \\<br /> \frac{1}{-\sqrt{2}} \\<br /> 0 \\<br /> \end{matrix}<br /> \right]<br /> = \left[\begin{matrix}<br /> t_{x} \\<br /> t_{y} \\<br /> t_{z} \\<br /> \end{matrix}<br /> \right]
This results in
\vec{t}=<br /> \left[\begin{matrix}<br /> \frac{3}{\sqrt{2}}-1 \\<br /> -1 \\<br /> \frac{1000}{\sqrt{2}}-1 \\<br /> \end{matrix}<br /> \right]
Then I find the normal component
\vec{\sigma}_{n}=\left[ \frac{3}{\sqrt{2}}-1,-1,\frac{1000}{\sqrt{2}}-1\right] \cdot<br /> \left[\begin{matrix}<br /> \frac{1}{-\sqrt{2}} \\<br /> \frac{1}{-\sqrt{2}} \\<br /> 0 \\<br /> \end{matrix}<br /> \right]
\vec{\sigma}_{n} = \frac{3}{2}-\sqrt{2}
Using the hint that was provided, I solve for \vec{\tau}
\vec{\tau}=\vec{t}-\vec{\sigma}_n
Is this procedure correct thus far? I've seen elsewhere that
\tau=\vec{t}-(\vec{t}\cdot \vec{n})\vec{n}
I'm a bit confused with the notation of the supplied equation for \sigma because if you take the dot product of a vector with a unit normal you should only get a scalar. The notation shows that it is a vector.