- #1
- 237
- 2
Homework Statement
Find the normal and shear components ([itex]\vec{\sigma}_{n},\vec{\tau}[/itex]) of the stress vector on the surface ABCD.
Given:
State of stress at a point
[itex]\sigma_{xx}=3[/itex]
[itex]\sigma_{yy}=0[/itex]
[itex]\sigma_{zz}=-1[/itex]
[itex]\sigma_{xy}=-\sqrt{2}[/itex]
[itex]\sigma_{xz}=1000[/itex]
Unit normal:
[itex]\widehat{n}=\frac{1}{\sqrt{2}}\widehat{i}+\frac{1}{\sqrt{2}}\widehat{j}+0\widehat{k}[/itex]
Homework Equations
[itex]\vec{\sigma}_{n}=\vec{t}\cdot\widehat{n}[/itex]
[itex]\vec{t}=\vec{\sigma}_{n}+\vec{\tau}[/itex]
The Attempt at a Solution
First I take the stress matrix and multiply it by the unit normal to find the traction components
[itex]\sigma = \left[\begin{matrix}
3 & -\sqrt{2} & 1000 \\
-\sqrt{2} & 0 & -\sqrt{2} \\
1000 & -\sqrt{2} & -1 \\
\end{matrix}
\right][/itex]
[itex]\left[\begin{matrix}
3 & -\sqrt{2} & 1000 \\
-\sqrt{2} & 0 & -\sqrt{2} \\
1000 & -\sqrt{2} & -1 \\
\end{matrix}
\right]
\left[\begin{matrix}
\frac{1}{-\sqrt{2}} \\
\frac{1}{-\sqrt{2}} \\
0 \\
\end{matrix}
\right]
= \left[\begin{matrix}
t_{x} \\
t_{y} \\
t_{z} \\
\end{matrix}
\right][/itex]
This results in
[itex]\vec{t}=
\left[\begin{matrix}
\frac{3}{\sqrt{2}}-1 \\
-1 \\
\frac{1000}{\sqrt{2}}-1 \\
\end{matrix}
\right][/itex]
Then I find the normal component
[itex]\vec{\sigma}_{n}=\left[ \frac{3}{\sqrt{2}}-1,-1,\frac{1000}{\sqrt{2}}-1\right] \cdot
\left[\begin{matrix}
\frac{1}{-\sqrt{2}} \\
\frac{1}{-\sqrt{2}} \\
0 \\
\end{matrix}
\right][/itex]
[itex]\vec{\sigma}_{n} = \frac{3}{2}-\sqrt{2}[/itex]
Using the hint that was provided, I solve for [itex]\vec{\tau}[/itex]
[itex]\vec{\tau}=\vec{t}-\vec{\sigma}_n[/itex]
Is this procedure correct thus far? I've seen elsewhere that
[itex]\tau=\vec{t}-(\vec{t}\cdot \vec{n})\vec{n}[/itex]
I'm a bit confused with the notation of the supplied equation for [itex]\sigma[/itex] because if you take the dot product of a vector with a unit normal you should only get a scalar. The notation shows that it is a vector.