Normal modes: Spring and pendulum

AI Thread Summary
The discussion centers on a disagreement regarding the kinetic energy expression for a mass in a spring-pendulum system. The participant believes the provided solution for kinetic energy, denoted as T2, is incorrect and presents their own formulation. They express uncertainty about their reasoning but assert that their version of T2 appears accurate. Additionally, they suggest that the expression can be simplified for small oscillations. The overall consensus is that the original solution for T2 needs revision.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
I was doing the exercise as follows:
oi.png

I am not sure if you agree with me, but i disagree with the solution given.
I was expecting that the kinect energy of the mass ##m## (##T_2##) should be $$T_2 = \frac{m((\dot q+lcos(\theta)\dot \theta)^2 + (lsin(\theta) \dot \theta)^2)}{2}$$
I could be wrong, of course, but i have tried to figure out my error and was not able to discover. So my guess is that the solution can be wrong.
 
Physics news on Phys.org
Your expression for ##T_2## looks correct. For small oscillations it can be simplified a little.

The expression for ##T_2## in the solutions is not correct.
 
  • Like
Likes LCSphysicist
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top