Normalised eigenspinors and eigenvalues of the spin operator

Click For Summary
The discussion focuses on finding the normalized eigenspinors and eigenvalues of the spin operator Sy for a spin 1/2 particle. The eigenvalues are determined to be ±ħ/2, with the normalized eigenspinors identified as X+ = 1/√2 [1, i] and X- = 1/√2 [1, -i]. To demonstrate that these eigenspinors are orthogonal, it is shown that the inner product X-†X+ equals zero, confirming their orthogonality. Additionally, it is noted that since Sy is a Hermitian operator, its eigenfunctions are inherently orthogonal. The discussion concludes with a verification of the orthogonality condition.
says
Messages
585
Reaction score
12

Homework Statement


Find the normalised eigenspinors and eigenvalues of the spin operator Sy for a spin 1⁄2 particle

If X+ and X- represent the normalised eigenspinors of the operator Sy, show that X+ and X- are orthogonal.

Homework Equations


det | Sy - λI | = 0
Sy = ## ħ/2 \begin{bmatrix}
0 & -i \\
i & 0 \\
\end{bmatrix} ##

The Attempt at a Solution


## det | ħ/2 \begin{bmatrix}
0 & -i \\
i & 0 \\
\end{bmatrix} ## - ## \begin{bmatrix}
λ & 0 \\
0 & λ \\
\end{bmatrix} | = 0 ##

skipping a few steps here but the eigenvalues = ±ħ/2

normalised eigenspinors

## ħ/2 \begin{bmatrix}
0 & -i \\
i & 0 \\
\end{bmatrix} \begin{bmatrix}
a \\
b \\
\end{bmatrix} = ± ħ/2
\begin{bmatrix}
a \\
b \\
\end{bmatrix} ##

## ħ/2 \begin{bmatrix}
0 & -i \\
i & 0 \\
\end{bmatrix} \begin{bmatrix}
1 \\
γ \\
\end{bmatrix} = ħ/2
\begin{bmatrix}
1 \\
γ \\
\end{bmatrix} ##

## \begin{bmatrix}
-iγ \\
i \\
\end{bmatrix} = \begin{bmatrix}
1 \\
γ \\
\end{bmatrix} ##

γ = i ⇒ X+ = 1/√2 ## \begin{bmatrix}
1 \\
i \\
\end{bmatrix} ##

## ħ/2 \begin{bmatrix}
0 & -i \\
i & 0 \\
\end{bmatrix} \begin{bmatrix}
1 \\
γ \\
\end{bmatrix} = -ħ/2
\begin{bmatrix}
1 \\
γ \\
\end{bmatrix} ##

## \begin{bmatrix}
-iγ \\
i \\
\end{bmatrix} =
\begin{bmatrix}
-1 \\
-γ \\
\end{bmatrix} ##

γ = -i ⇒ X- = 1/√2 ## \begin{bmatrix}
1 \\
-i \\
\end{bmatrix} ##

Eigenvalues of the spin operator Sy = ±ħ/2

Normalised eigenspinors =
X+ = 1/√2 ## \begin{bmatrix}
1 \\
i \\
\end{bmatrix} ##

and

X- = 1/√2 ## \begin{bmatrix}
1 \\
-i \\
\end{bmatrix} ##I've got the eigenvalues and normalised eigenspinors but I'm not sure how to show the eigenspinors are orthogonal.
 
Physics news on Phys.org
says said:
I've got the eigenvalues and normalised eigenspinors but I'm not sure how to show the eigenspinors are orthogonal.
They are orthogonal if ##X_-^\dagger X_+ = 0## (or alternatively ##X_+^\dagger X_- = 0##).
 
  • Like
Likes says
## X = (XT)*

where T: transpose of matrix
*: complex conjugate

Thanks for that. I calculated it and can see that it equals 0.

I also found that eigenfunctions of hermitian operators are orthogonal. So I figured if Sy is hermitian then the eigenfunctions of Sy will be orthogonal. I essentially did the same thing.

If Sy = Sy then Sy is hermitian and it's eigenfunctions / eigenspinors are orthogonal.
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
33
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K