Normalizing Hermite Polynomials

Click For Summary
The discussion focuses on evaluating the normalization integral for Hermite polynomials, specifically using equations (22.15), (22.12), and (22.17a). The integral is set up as the square of Hermite polynomials multiplied by a Gaussian function. Integration by parts (IBP) is applied, leading to a recursive relationship that simplifies the integral. A key point raised is the presence of an extra factor of (-1)^n in the final result, which is clarified to be resolved through careful tracking of signs during the integration process. The final conclusion emphasizes that the correct normalization integral yields a result proportional to √π without the extraneous factor.
rmiller70015
Messages
110
Reaction score
1

Homework Statement


Evaluate the normalization integral in (22.15). Hint: Use (22.12) for one of the $H_n(x)$ factors, integrate by parts, and use (22.17a); then use your result repeatedly.

Homework Equations


(22.15) ##\int_{-\infty}^{\infty}e^{-x^2}H_n(x)H_m(x)dx = \sqrt{\pi}2^nn!## when ##n=m##
(22.12) ##H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2}##
(22.17a) ##H'_n(x)=2nH_{n-1}(x)##

The Attempt at a Solution


I started out by writing my integral from (22.15) as:
##\int_{-\infty}^{\infty}e^{-x^2}[H_n(x)]^2dx##
Expanding one of the ##H_n(x)## terms gives:
##\int_{-\infty}^{\infty}e^{-x^2}H_n(x)e^{x^2}(-1)^n\frac{d^n}{dx^n}e^{-x^2}dx##
##=(-1)^n\int_{-\infty}^{\infty}H_n(x)\frac{d^n}{dx^n}e^{-x^2}dx##
Integration by parts and using equation 22.17a gives:
##(-1)^n[H_n(x)e^{-x^2}|^{\infty}_{-\infty}-\int^{\infty}_{-\infty}2nH_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}dx##
The first term goes to zero and leaves:
##(-1)^n\int^{\infty}_{-\infty}2nH_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}dx##
IBP n-1 more times gives:
##(-1)^n2^nn!\int^{\infty}_{-\infty}H_0(x)e^{-x^2}dx=(-1)^n2^nn!\int^{\infty}_{-\infty}e^{-x^2}dx = (-1)^n2^nn!\sqrt{\pi}##

This is correct except I have this extra factor of ##(-1)^n## that shouldn't be there, I'm not sure how to get rid of it.
 
Physics news on Phys.org
Hi rmiller,

Let's take a closer look at the IBP:
rmiller70015 said:
##(-1)^n[H_n(x)e^{-x^2}|^{\infty}_{-\infty}-\int^{\infty}_{-\infty}2nH_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}dx##

Shouldn't that be:
$$(-1)^n\left[H_n(x)e^{-x^2}|^{\infty}_{-\infty}-\int^{\infty}_{-\infty}2nH_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}dx\right] \\
=(-1)^n \cdot \left[ -\int^{\infty}_{-\infty}2nH_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}dx \right] \\
=(-1)^{n-1} \int^{\infty}_{-\infty}2nH_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}e^{-x^2}dx
$$
?
 
  • Like
Likes rmiller70015
For future people, you get a factor of -2 each time you do ibp and in the end you're left with (-1)^n (-2)^n when you combine them it gives 2^n.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
6
Views
2K