Right so here I go (again

):
I want to compute \sin\frac{3\pi}{8}
\sin\frac{3\pi}{8} = \sin(\frac{2\pi+\pi}{8}) = \sin(\frac{\pi}{4}+\frac{\pi}{8})
Therefore: \sin(\frac{\pi}{4}+\frac{\pi}{8}) = \sin\frac{\pi}{4}\cos\frac{\pi}{8}+\cos\frac{\pi}{4}\sin\frac{\pi}{8}
\sin\frac{\pi}{4}\cos\frac{\pi}{8}+\cos\frac{\pi}{4}\sin\frac{\pi}{8} is equal to (\sin\frac{\pi}{8}\times\frac{\sqrt{2}}{2})+(\frac{\sqrt{2}}{2}\times\cos\frac{\pi}{8})
BobG said that: \sin x = \sqrt{\frac{1-\cos 2x}{2}} so substitute x = \frac{\pi}{8}
Therefore: \sin \frac{\pi}{8} = \sqrt{\frac{1-\cos\frac{\pi}{4}}{2}}
So now: (\sin\frac{\pi}{8}\times\frac{\sqrt{2}}{2})+(\frac{\sqrt{2}}{2}\times\cos\frac{\pi}{8}) = (\sqrt{\frac{1-\cos\frac{\pi}{4}}{2}}\times\frac{\sqrt{2}}{2})+(\frac{\sqrt{2}}{2}\times\cos\frac{\pi}{8})
= (\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}\times\frac{\sqrt{2}}{2})+(\frac{\sqrt{2}}{2}\times\cos\frac{\pi}{8})
For \cos\frac{\pi}{8} am I to assume that \cos\frac{x}{2} = \sqrt{\frac{1+\cos x}{2}} is equal to \cos x = \sqrt{\frac{1+\cos 2x}{2}}
and so \cos\frac{\pi}{8} = \sqrt{\frac{1+\cos\frac{\pi}{4}}{2}} = \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}
So now: (\sin\frac{\pi}{8}\times\frac{\sqrt{2}}{2})+(\frac{\sqrt{2}}{2}\times\cos\frac{\pi}{8}) = (\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}\times\frac{\sqrt{2}}{2})+(\frac{\sqrt{2}}{2}\times\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}})
This is the bit were I get stuck. I can sort of see how to simplify it but not very well.
The Bob (2004 ©)
P.S. Just making sure everything is fine to date.
