Number of collisions by a bullet

Click For Summary
SUMMARY

The discussion focuses on calculating the number of collisions a bullet experiences when it hits multiple wooden blocks, with each collision resulting in a 10% reduction of the bullet's speed. The formula discussed is Vn = Vn-1 - (Vn-1/10), which indicates that the speed decreases by 10% of the previous speed after each collision. Participants clarify whether the speed loss applies to the initial speed or the speed after each collision, emphasizing the need to understand the physics behind the speed reduction, particularly referencing Newton's second law.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Basic knowledge of kinematics and projectile motion
  • Familiarity with percentage calculations
  • Ability to manipulate algebraic equations
NEXT STEPS
  • Study the principles of Newton's second law in detail
  • Learn about energy loss in collisions and its implications
  • Explore kinematic equations for projectile motion
  • Investigate the effects of friction and material properties on projectile speed
USEFUL FOR

Physics students, educators, and anyone interested in understanding the dynamics of projectiles and collision physics.

NODARman
Messages
57
Reaction score
13
New poster has been reminded to always show their work when starting schoolwork threads.
Homework Statement
I'm trying to calculate collision number.
Relevant Equations
.
How to find the collision number if the moving bullet hits a few wooden blocks and every collision takes 10 percent of its speed. In which block will the bullet stay?
 
Physics news on Phys.org
NODARman said:
Homework Statement:: I'm trying to calculate collision number.
Relevant Equations:: .

How to find the collision number if the moving bullet hits a few wooden blocks and every collision takes 10 percent of its speed. In which block will the bullet stay?
Why would a wooden block reduce a projectile's spped by a fixed percentage? Would something hitting the block at ##1 \ m/s## emerge at ##0.9 \ m/s##?
 
IDK. That physics task in the book says that the speed of a bullet decreases by 10% after hitting every block. Every block has the same length. The task doesn't contain L, V, or K. There is only a 10% of speed loss. I've just written the formula:
Vn=Vn-1-(Vn-1/10)
I think this formula works in general, but I don't need it here.
 
NODARman said:
IDK. That physics task in the book says that the speed of a bullet decreases by 10% after hitting every block. Every block has the same length. The task doesn't contain L, V, or K. There is only a 10% of speed loss. I've just written the formula:
Vn=Vn-1-(Vn-1/10)
I think this formula works in general, but I don't need it here.
That might take a lot of blocks! Are you sure the book doesn't say that it loses 10% of its speed going through the first block? Not every block?
 
Yeah, yeah, the first block. I forgot to say that because I don't really understand what it means (and also how to solve it).
Thanks.
 
NODARman said:
Yeah, yeah, the first block. I forgot to say that because I don't really understand what it means (and also how to solve it).
Thanks.
What do you think might be the constant factor in each collision?
 
"The bullet is hitting a few wooden blocks which are placed at a different distance from each other. In which block will the bullet stick if after exiting the first block, it loses 10% of its initial speed."
(I've translated as I could)

So, if after the fist hit the bullet lost 10% of its initial speed, it means the V1=V0-(V0/10) (this will be the second speed of the bullet which will hit the second block). Is that mean that every hit reduces the speed by 10% of V0 and not Vn=Vn-1-(Vn-1/10).

If we put the numbers in the first case, then the speed would be, let's say: 100, 90, 80, 70, etc.
The second case: 100, 90, 81, 78, etc.
 
NODARman said:
"The bullet is hitting a few wooden blocks which are placed at a different distance from each other. In which block will the bullet stick if after exiting the first block, it loses 10% of its initial speed."
(I've translated as I could)

So, if after the fist hit the bullet lost 10% of its initial speed, it means the V1=V0-(V0/10) (this will be the second speed of the bullet which will hit the second block). Is that mean that every hit reduces the speed by 10% of V0 and not Vn=Vn-(Vn/10).

If we put the numbers in the first case, then the speed would be, let's say: 100, 90, 80, 70, etc.
The second case: 100, 90, 81, 78, etc.
This is not the correct method. You must consider why it loses speed. What causes the bullet to lose speed? Hint Newton's second law.
 
  • Like
Likes   Reactions: NODARman

Similar threads

  • · Replies 6 ·
Replies
6
Views
617
Replies
17
Views
2K
Replies
21
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 11 ·
Replies
11
Views
7K