- #1
PhDeezNutz
- 808
- 555
- Homework Statement
- An inertial observer ##O## has 4-velocity ##\tilde{U}_0## and a particle ##P## has a (variable) 4-acceleration ##\tilde{A}##. If ##\tilde{U}_0 \cdot \tilde{A} = 0##, what can you conclude about the speed of ##P## in the rest frame of ##O##?
- Relevant Equations
- Two expressions derived in my class notes and in Rindler's book are
##\tilde{A} = \left( c \gamma \dot{\gamma}, \gamma^2 a_1 + \gamma \dot{\gamma} u_1, \gamma^2 a_2 + \gamma \dot{\gamma} u_2, \gamma^2 a_3 + \gamma \dot{\gamma} u_3 \right)##
##\dot{\gamma} = \frac{\gamma^3}{c^2} \left(\tilde{u} \cdot \tilde{a} \right)##
If ##\tilde{U}_0 \cdot \tilde{A} = 0## in one frame then I would imagine it is also zero in another frame because from my understanding is that dot products are invariant under boosts. So let's boost to the rest frame of O. In that frame
##\tilde{U}_{0T} = \left( c, 0,0,0 \right)##
and as stated in the relevant equations
##\tilde{A}_T = \left( c \gamma \dot{\gamma}, \gamma^2 a_1 + \gamma \dot{\gamma} u_1, \gamma^2 a_2 + \gamma \dot{\gamma} u_2, \gamma^2 a_3 + \gamma \dot{\gamma} u_3 \right)##
##\tilde{U}_{0T} \cdot \tilde{A}_T = 0 \Rightarrow c^2 \gamma \dot{\gamma} = 0 \Rightarrow \gamma \dot{\gamma} = 0##
Since ##\gamma## cannot be equal to zero we conclude ##\dot{\gamma} = 0##
Using the second relevant equation
##\dot{\gamma} = \frac{\gamma^3}{c^2} \left(\tilde{u} \cdot \tilde{a} \right)##
##\tilde{u} \cdot \tilde{a} = 0##
I think this corresponds to particle P moving in uniform circular motion in the rest frame of O
##\tilde{U}_{0T} = \left( c, 0,0,0 \right)##
and as stated in the relevant equations
##\tilde{A}_T = \left( c \gamma \dot{\gamma}, \gamma^2 a_1 + \gamma \dot{\gamma} u_1, \gamma^2 a_2 + \gamma \dot{\gamma} u_2, \gamma^2 a_3 + \gamma \dot{\gamma} u_3 \right)##
##\tilde{U}_{0T} \cdot \tilde{A}_T = 0 \Rightarrow c^2 \gamma \dot{\gamma} = 0 \Rightarrow \gamma \dot{\gamma} = 0##
Since ##\gamma## cannot be equal to zero we conclude ##\dot{\gamma} = 0##
Using the second relevant equation
##\dot{\gamma} = \frac{\gamma^3}{c^2} \left(\tilde{u} \cdot \tilde{a} \right)##
##\tilde{u} \cdot \tilde{a} = 0##
I think this corresponds to particle P moving in uniform circular motion in the rest frame of O