Oblique shock waves: how to find the wedge angle for trailing shock?

AI Thread Summary
Determining the wedge angle for oblique shock waves involves understanding the relationship between the flow turning angle and the shock wave angle, typically using the θ-β relationships. In the context of a 6-degree wedge angle at the trailing edge, this angle indicates how the flow is redirected. The discussion raises questions about the impact of a flat top surface on the effective wedge angle, suggesting that symmetry may influence calculations. The analogy drawn between the trailing shock wave and aerodynamic lift highlights the complexities of supersonic and hypersonic flow behaviors. Understanding these principles is crucial for accurately predicting shock wave characteristics in various body shapes.
Master1022
Messages
590
Reaction score
116
Homework Statement
How can we find the wedge angle for the trailing shock wave?
Relevant Equations
Shock waves
Hi,

I have a question regarding oblique shockwaves.

Question: How can we determine what the wedge angle is for the shockwave in a situation?

Context: This problem here shows an oblique shock wave on the trailing edge of the body and it simply states that the wedge angle is 6 degrees. Why is this the case? Is there a general principle/method to figure these out? What if the body was completely flat on top (i.e so the body is no longer symmetric); does that change the process of knowing what the effective 'wedge angle'?

Note that the leading one makes sense to me as I can see that the flow is being turned by 6 degrees and thus that can be used in the ## \theta - \beta ## relationships to find the angle of the oblique shock wave...

Screen Shot 2021-03-01 at 8.49.54 PM.png


Any help would be greatly appreciated. Please let me know if this is in the wrong forum.
 
Physics news on Phys.org
My understanding of supersonic / hypersonic travel is that the atmosphere acts like an incompressible liquid or solid. In aerodynamics lift is classically represented by suction on the top trailing edge of the wing this is perhaps similar to the reason for the "oblique shock wave on the trailing edge of the body". Effectively the trailing shock wave would be similar to suction or cavitation. Not sure about the mathematical version of the explanation.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top