MHB Proving an Odd Function: ln(x+√(1+x²))

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
The function f(x) = ln(x + √(1 + x²)) is being examined to prove it is an odd function. By calculating f(-x), it simplifies to ln(-x + √(1 + x²)), which leads to the expression for -f(x). The transformation shows that -f(x) equals ln(-x + √(1 + x²)), confirming that f(-x) = -f(x). Therefore, the function is indeed odd, as the calculations validate the odd function property. The discussion effectively demonstrates the proof through logarithmic properties and simplifications.
Yankel
Messages
390
Reaction score
0
Hello,

How do I prove that this function:

\[f(x)=ln(x+\sqrt{1+x^{2}})\]

is an odd function ?

It is clear to me that it is odd, I tried the usual way of checking if a function is even or odd, by looking at f(-x), but it just got me to where x is changing sign while the square root isn't, it there a logarithms rule I am missing here ?

Thank you !
 
Mathematics news on Phys.org
$$f(-x) = \ln(-x+\sqrt{1+(-x)^2}) = \ln(-x+\sqrt{1+x^2})$$
Let us compute $-f(x)$:
$$-f(x) = - \ln(x+\sqrt{1+x^2}) = \ln\left(\frac{1}{x+\sqrt{1+x^2}}\right) = \ln\left[\frac{x-\sqrt{1+x^2}}{(x+\sqrt{1+x^2})(x-\sqrt{1+x^2})}\right]$$
$$= \ln\left(-x+\sqrt{1+x^2}\right)$$

Hence, $f(x)$ is odd.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top