Oddity of a functional equation for the R zeta function

Click For Summary

Discussion Overview

The discussion revolves around the functional equation of the Riemann zeta function, specifically the symmetry expressed as ζ(s) = ζ(1-s) and its implications. Participants explore the nature of this symmetry, its relationship to the completed zeta function, and the visual representation of these concepts in relation to the Gamma function. The scope includes theoretical considerations, mathematical reasoning, and references to visual interpretations in videos.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses curiosity about the symmetry ζ(s) = ζ(1-s) and its implications, noting a contradiction with the idea that the Riemann zeta function is not symmetric along any vertical line.
  • Another participant clarifies that the functional equation applies to the completed zeta function, Λ(s), which satisfies Λ(s) = Λ(1-s).
  • Links to additional resources are provided for formal proofs and historical context regarding the Riemann hypothesis.
  • A participant mentions a video that suggests a more complex symmetry between Re(s) > 1 and Re(s) < 1, seeking further clarification on this point.
  • Several participants discuss the symmetry of the function ξ(s) = ξ(1-s) and the role of the Gamma function in achieving this symmetry from the asymmetric zeta function.
  • There is speculation about the visual representation of "bending grid lines" in relation to transformations of the zeta function and the Gamma function.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the implications of the symmetry of the zeta function, and multiple competing views remain regarding its interpretation and visual representation.

Contextual Notes

The discussion highlights limitations in understanding the nature of symmetry in the zeta function, particularly concerning the definitions and properties of the completed zeta function and the Gamma function. There are unresolved aspects regarding the visual interpretations presented in external videos.

Who May Find This Useful

This discussion may be of interest to those studying the Riemann zeta function, functional equations in mathematics, and visual representations of complex functions.

nomadreid
Gold Member
Messages
1,771
Reaction score
255
TL;DR
ζ(s)=ζ(1-s) for the zeta function seems to indicate a symmetry around Re(s)=1/2, but this is odd....
In https://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/fnleqn.htm the equation

ζ(s)=ζ(1-s) is used, where ζ is the Riemann zeta function, which I find curious, for the following reasons

this indicates a symmetry around Re(s)=1/2, which seems to be what the diagram at 20:27 of seems to imply, but contradicting the statement " The Riemann zeta function is not symmetric along with any vertical line at all " from https://www.quora.com/Is-the-Riemann-zeta-function-symmetrical

as well as the elementary consideration that on the real axis there are the trivial zeros in the negative reals that have no corresponding zeros in the positive-real-part side.

(Note that I am not asking about the symmetry ζ(s)=ζ(s*), which is more reasonable.)

What am I missing? Thanks in advance for your patience; I presume this question has been asked many times before (although I couldn't find a good answer with my Internet search).
 
Physics news on Phys.org
The functional equations is not for the zeta itself, but for the completed one.

##\zeta(s) = \sum_{n=1}^\infty \frac1{n^s}##

##\Lambda(s) = \frac12 \pi^{\frac{-s}2}s(s-1)\Gamma(\frac s2) \zeta(s)##

then

##\Lambda(s) = \Lambda(1-s)##
 
  • Like
Likes   Reactions: nomadreid and fresh_42
Ah, super! Many thanks to both answers! martinbn's answer makes complete sense and clears my question about the equation up; fresh_42's links will provide valuable resources.

A side question, if I may: the 3Blue1Brown video (reference above) seems to be indicating a more complicated symmetry between the part for Re(s)>1 and Re(s)<1 -- his explanation is rather hand-wavy on that. That is, transforming the grid lines on each half of Re(s)=1, he graphs:

bluebrown3.png

(How he graphs this is explained nicely in aheight's answer (post#2) in https://www.physicsforums.com/threads/video-analytic-continuation-seems-to-mix-4-d-2-d-maps.944596/ )

Although my question is rather broad, any hints that anyone could give about this symmetry would be highly appreciated. Either a quick equation as in martinbn's reply, or an indication as to where in the links provided by fresh_42 I might find the answer. Thanks again!
 
Last edited:
The symmetry is given by ##\xi(s)=\xi(1-s)## where ##\xi(s)=\underbrace{\pi^{-s/2}\,\Gamma(s/2)}_{=c_s} \zeta(s).##

To get from the asymmetric ##\zeta(s)## to the symmetric ##\xi(s)## we need a correction factor ##c_s## which depends on the Gamma-function. And Euler has proven
$$\Gamma(z)\Gamma(1-z) = \dfrac{\pi}{\sin \pi z}\;\text{ for all }z\in \mathbb{C}-\mathbb{Z}$$
I suppose that "bending the grid lines" is a result of visualizing this property of the Gamma-function but I can only guess what exactly they did there. Maybe https://www.wolframalpha.com/input?i=y=pi/(Gamma(ix)*sin(pi+*+i*+x)) is an indication.
 
Last edited:
  • Like
Likes   Reactions: nomadreid
fresh_42 said:
The symmetry is given by ##\xi(s)=\xi(1-s)## where ##\xi(s)=\underbrace{\pi^{-s/2}\,\Gamma(s/2)}_{=c_s} \zeta(s).##

To get from the asyymetric ##\zeta(s)## to the symmetric ##\xi(s)## we need a correction factor ##c_s## which depends on the Gamma-function. And Euler has proven
$$\Gamma(z)\Gamma(1-z) = \dfrac{\pi}{\sin \pi z}\;\text{ for all }z\in \mathbb{C}-\mathbb{Z}$$
I suppose that "bending the grid lines" is a result of visualizing this property of the Gamma-function but I can only guess what exactly they did there. Maybe https://www.wolframalpha.com/input?i=y=pi/(Gamma(ix)*sin(pi+*+i*+x)) is an indication.
In the video he gives an example what he means by "bending the grid lines" by using the simpler transformation f(z)=z2: so he takes for example the grid line z: Im(z)=2i, so that if you square each point r+2i in the grid line (r real), you get (r+2i)2=(r2-4)+4ri, so that the line
{z| ∃r∈ℝ: z=(r2-4)+4ri is "bent" (and rotated) compared to the original line.
Roughly,blue to green:
bent.png

So, it appears that the graph referred to in the last post would be looking at the zeta function as a transformation (or, a pair of transformations, one on either side of Re(s)=1) composed of rotations and scaling, so that between each z and ζ(z), a path is traced.
 
  • Like
Likes   Reactions: fresh_42

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K