ODE Applications - Unforced Mechanical Vibrations

Click For Summary
SUMMARY

The discussion focuses on designing a critically damped spring and dashpot system for a 32lb weight. The relationship between the damping constant γ and the spring constant k is established as γ = sqrt(4km) and k = γ²/4m. The initial conditions specify a maximum displacement of 6 inches and an initial velocity of 4 ft/sec, leading to the conclusion that the system must be critically damped to avoid overshooting the maximum displacement. The participants clarify the correct form of the solution for critically damped systems and address misconceptions regarding initial conditions.

PREREQUISITES
  • Understanding of critically damped systems in mechanical vibrations
  • Familiarity with spring-dashpot system dynamics
  • Knowledge of initial value problems (IVP) in differential equations
  • Basic concepts of damping ratios and their implications
NEXT STEPS
  • Calculate specific values for damping constant γ and spring constant k using the given initial conditions
  • Explore the mathematical derivation of critically damped motion in spring systems
  • Investigate the implications of initial conditions on system behavior in mechanical vibrations
  • Learn about the differences between underdamped, critically damped, and overdamped systems
USEFUL FOR

Mechanical engineers, physics students, and anyone involved in the design of damping systems or studying mechanical vibrations will benefit from this discussion.

VeganGirl
Messages
10
Reaction score
0

Homework Statement



A spring and dashpot system is to be designed for a 32lb weight so that the overall system is critically damped.

(a) How must the damping constant γ and spring constant k be related?
(b) Assume the system is to be designed so that the mass, when given an initial velocity of 4 ft/sec from its rest position, will have a maximum displacement of 6 inches. What values of damping constant γ and spring constant k required?

Homework Equations


The Attempt at a Solution



For the system to be critically damped, γ^(2) = 4km

(a) γ = sqrt(4km)
k = γ^(2)/4m

(b) the IVP is... my'' + λγ' + ky = 0, y(0) = 6, y'(0) = 4

Since γ^2 = 4km,

The solution of the IVP is... y(t) = c1e^(λt) + c2te^(λt)

Imposing the initial conditions, I got c1 = 6
and c2 = 4 + 12 k^(1/2)*m^(-1/2)

Now, how do I solve for the damping constant γ and the spring constant k?

Please help!
 
Physics news on Phys.org
The first part is correct. But since your damping ratio is 1, I think your solution for 'y' should be
of this form:

y(t)=(A+Bt)ert


Your form shows that it will be over damped.
 
Last edited:
rock.freak667 said:
The first part is correct. But since your damping ratio is 1, I think your solution for 'y' should be
of this form:

y(t)=(A+B)ert


Your form shows that it will be over damped.

Thank you for your reply.
In my text, I have y(t) = c1e^(λ1t) + c2e^(λ2t) as an over-damped case,

y(t) = c1e^(λt) + c2te^(λt) as a critically-damped case,

and y(t) = (A+B)e^(rt) as an underdamped case.


I'm wondering if I made a mistake somewhere with the initial conditions.
It says in the question, that it will have a max. displacement of 6 in.
I assumed that the max. displacement will occur at t=0. Is this correct?

Also, I have trouble understanding how the initial velocity can be 4 ft/sec.
Don't you always start at zero?
 
VeganGirl said:
Thank you for your reply.
In my text, I have y(t) = c1e^(λ1t) + c2e^(λ2t) as an over-damped case,

y(t) = c1e^(λt) + c2te^(λt) as a critically-damped case,

and y(t) = (A+B)e^(rt) as an underdamped case.

I apologize, I misread your solution as the underdamped one.


VeganGirl said:
I'm wondering if I made a mistake somewhere with the initial conditions.
It says in the question, that it will have a max. displacement of 6 in.
I assumed that the max. displacement will occur at t=0. Is this correct?

Also, I have trouble understanding how the initial velocity can be 4 ft/sec.
Don't you always start at zero?

Well you can have a zero initial position such that y(0)=0, but you give it an initial velocity. This is what that meant, so your other condition is that y'(0)=4
 
Okay, so my equation and the initial conditions are correct.
How do I go about getting γ and k?
Would I get constants (numbers) or would it be a function of something?

With only knowing C1 and C2, I have no idea how to proceed.
 
It said also that the maximum displacement is 6 inches, meaning that the velocity at the time to reach 6 inches is zero.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
17
Views
3K
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K