# On the orthogonality of Sturm-Liouville eigenvectors

1. Feb 13, 2015

### mjordan2nd

From what I understand, solutions to the Sturm-Liouville differential equation (SLDE) are considered to be orthogonal because of the following statement:

$$\left( \lambda_m-\lambda_n \right) \int_a^b w(x) y_m(x)y_n(x) dx = 0$$

My first question involves the assumptions that go into this equation. One of the assumptions that go into this equation is that the solutions to the SLDE satisfy the Dirichlet, Neumann, or mixed homogeneous boundary conditions, correct? If the boundary conditions were inhomogeneous then the above equation would not necessarily be true, correct? Is it then correct to say that solutions to the SLDE are only orthogonal if they satisfy homogeneous boundary conditions?

My second question involves the case when $\lambda_m=\lambda_n$. Since the SLDE is a second order ordinary differential equation there should be two linearly independent solutions for each eigenvalue. So even if $\lambda_m=\lambda_n$, that doesn't necessarily mean $y_m=y_n$. In this case, it is not clear that these two solutions are orthogonal. I can buy that every eigensubspace of the SLDE is orthogonal to the others, however what about two vectors belonging to the same subspace?

Thanks.

2. Feb 13, 2015

### mathman

I can't answer your specific question, but I think you would do better if you put this into one of the math forums.

3. Feb 13, 2015

### mjordan2nd

Noted, and thank you. Will put it there.