A On the Refined Index of BPS states

  • Thread starter kdv
  • Start date

kdv

336
0
I am trying to reproduce a very simple result that involved evaluating the refined index for a vector supermultiplet but ran into a snag. I hope someone will be able to clear that up easily.

Apparently for a half vector multiplet (meaning that we do not include the CPT conjugated states), the result is (see 0912.1346, equations 3.1 to 3.3):

$$ Tr_{H'} (-y)^{2J_3'} = - y - y^{-1} $$

Here the primes indicate that we must remove from the state a half hypermultiplet, in other words
$$ H = H' \otimes \biggl( [\frac{1}{2}] + 2 [0] \biggr) $$

Now, unless I am mistaken, a half hypermultiplet has two states of helicity 1/2 and two of helicity zero.
And a half vector multiplet has one h=1, two h=1/2 and 1 h=0.

My questions are:

1) First they say that all multiplets contain at least a half hypermultiplet....but I don't see this in the vector multiplet since it has fewer h=0 states than a hypermultiplet.

2) How do they get the trace to be $$ -y-y^{-1}??$$ Clearly they consider only the values $$J_3'=\pm 1/2$$ but why ? My guess was that by J_3' they mean half the helicity, and if I consider the two helicities of a spin 1 particle, I would then get their result , but this leads to several questions:

I) Why would J_3' mean half the helicity?

II) Why would we consider the helicities + 1 and -1 if we are talking about half a vector multiplet? We should not be including the CPT conjugate, I thought?!

III) How does one get rid of the spin 1/2 and spin zero contributions, exactly? It seems to work for the spin 1/2 (vector and hypermultiplets have the same number of h=1/2 components) but it does not work for the h=0 states.

Thanks in advance
 

kdv

336
0
I am trying to reproduce a very simple result that involved evaluating the refined index for a vector supermultiplet but ran into a snag. I hope someone will be able to clear that up easily.

Apparently for a half vector multiplet (meaning that we do not include the CPT conjugated states), the result is (see 0912.1346, equations 3.1 to 3.3):

$$ Tr_{H'} (-y)^{2J_3'} = - y - y^{-1} $$

Here the primes indicate that we must remove from the state a half hypermultiplet, in other words
$$ H = H' \otimes \biggl( [\frac{1}{2}] + 2 [0] \biggr) $$

Now, unless I am mistaken, a half hypermultiplet has two states of helicity 1/2 and two of helicity zero.
And a half vector multiplet has one h=1, two h=1/2 and 1 h=0.

My questions are:

1) First they say that all multiplets contain at least a half hypermultiplet....but I don't see this in the vector multiplet since it has fewer h=0 states than a hypermultiplet.

2) How do they get the trace to be $$ -y-y^{-1}??$$ Clearly they consider only the values $$J_3'=\pm 1/2$$ but why ? My guess was that by J_3' they mean half the helicity, and if I consider the two helicities of a spin 1 particle, I would then get their result , but this leads to several questions:

I) Why would J_3' mean half the helicity?

II) Why would we consider the helicities + 1 and -1 if we are talking about half a vector multiplet? We should not be including the CPT conjugate, I thought?!

III) How does one get rid of the spin 1/2 and spin zero contributions, exactly? It seems to work for the spin 1/2 (vector and hypermultiplets have the same number of h=1/2 components) but it does not work for the h=0 states.

Thanks in advance
I have my questions. To get the vector multiplet, we must take H' to be [1/2]. Indeed,
$$ [\frac{1}{2}] \otimes \biggl( [\frac{1}{2}] + 2 [0] \biggr) = [1] + [0] + 2 [\frac{1}{2}] $$ which is the particle content of a vector supermultiplet. It's that simple.
 

Want to reply to this thread?

"On the Refined Index of BPS states" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top