MHB Optimization problem on function

Click For Summary
The discussion focuses on finding the maximum value of the expression f(x) = (x^4 - x^2) / (x^6 + 2x^3 - 1) for x > 1. A participant highlights the importance of recognizing that the term 1/(x - 1/x) is positive in the specified domain, allowing the application of the AM-GM inequality to minimize certain terms. This approach leads to a more structured solution for the optimization problem. Participants express appreciation for each other's solutions, indicating a collaborative atmosphere. The conversation emphasizes the mathematical techniques used to tackle the optimization challenge.
juantheron
Messages
243
Reaction score
1
Maximum value of expression $\displaystyle f(x) = \frac{x^4-x^2}{x^6+2x^3-1}\;,$ where $x>1$
 
Mathematics news on Phys.org
My solution:

If we want to maximize $f(x)=\dfrac{x^4-x^2}{x^6+2x^3-1}=\dfrac{1}{\left(\dfrac{x^6+2x^3-1}{x^4-x^2}\right)}$, this could be done if we are to find the minimum value for the expression $\dfrac{x^6+2x^3-1}{x^4-x^2}$.

Note that

$\begin{align*}\dfrac{x^6+2x^3-1}{x^4-x^2}&=x^2+1+\dfrac{2x^3+x^2-1}{x^4-x^2}\\&=x^2+1+\dfrac{2x^3}{x^2(x^2-1)}+\dfrac{x^2-1}{x^2(x^2-1)}\\&=x^2+1+\dfrac{2x}{x^2-1}+\dfrac{1}{x^2}\\&=\left(x-\dfrac{1}{x}\right)^2+\dfrac{2}{\left(x-\dfrac{1}{x}\right)}+3\\&=\left(x-\dfrac{1}{x}\right)^2+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+3---(*)\end{align*}$

We then apply the AM-GM to the first three terms of the expression (*) and that gives

$\left(x-\dfrac{1}{x}\right)^2+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}\ge 3$

(*Equality occurs when $x^2-x-1=\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0$.)

Therefore, the minimum value for $\dfrac{x^6+2x^3-1}{x^4-x^2}$ is $3+3=6$ and that results in a maximum of

$f(x)=\dfrac{x^4-x^2}{x^6+2x^3-1}=\dfrac{1}{\left(\dfrac{x^6+2x^3-1}{x^4-x^2}\right)}$ as $\dfrac{1}{6}$
.
 
Hi jacks again, :)

I want to apologize for not formulating my solution above in a very good way.:(

I forgot to mention that the term $\dfrac{1}{\left(x-\dfrac{1}{x}\right)}$ is a positive in the given domain where $x>1$, therefore, I could then apply the AM-GM on those terms to look for the minimum value for $\left(x-\dfrac{1}{x}\right)^2+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}$.

Sorry about that.:o
 
Thanks anemone for Nice Solution::

My Solution is Similar To Yours::

Given $$\displaystyle f(x) = \frac{x^4-x^2}{x^6+2x^3-1}\;,$$ Where $$x>1$$

So We can Simplify $$\displaystyle f(x) = \frac{x^4-x^2}{x^6+2x^3-1} = \frac{x^3\cdot \left(x-\frac{1}{x}\right)}{x^3\cdot \left(x^3-\frac{1}{x^3}\right)+2} = \frac{\left(x-\frac{1}{x}\right)}{\left(x^3-\frac{1}{x^3}\right)+2}$$

Now Let $$u = \left(x-\frac{1}{x}\right)>0\;,\left(x^3-\frac{1}{x^3}\right) = \left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)\;,x>1.$$

So $$\displaystyle f(u) = \frac{u}{u^3+3u+2}=\frac{u}{u^3+u+u+u+1+1}\leq \frac{u}{6\sqrt[6]{u^3\cdot u \cdot \cdot u \cdot u\cdot 1\cdot 1}} = \frac{1}{6}$$

Using $$\bf{A.M\geq G.M}$$ and above equality hold when $$\displaystyle u = 1\Rightarrow \left(x-\frac{1}{x}\right) = 1\Rightarrow x= \frac{\sqrt{5}+1}{2}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K