Optimization problem on function

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Function Optimization
Click For Summary
SUMMARY

The discussion focuses on optimizing the function \( f(x) = \frac{x^4-x^2}{x^6+2x^3-1} \) for \( x > 1 \). The key insight is the application of the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the expression \( \left(x-\frac{1}{x}\right)^2+\frac{1}{\left(x-\frac{1}{x}\right)}+\frac{1}{\left(x-\frac{1}{x}\right)} \), which helps in determining the minimum value of the function. The participants acknowledge the positivity of the term \( \frac{1}{\left(x-\frac{1}{x}\right)} \) in the specified domain, which is crucial for the optimization process. The discussion highlights collaborative problem-solving and the sharing of solutions among participants.

PREREQUISITES
  • Understanding of calculus, specifically optimization techniques.
  • Familiarity with the Arithmetic Mean-Geometric Mean (AM-GM) inequality.
  • Knowledge of algebraic manipulation of rational functions.
  • Basic understanding of limits and behavior of functions as \( x \) approaches specific values.
NEXT STEPS
  • Study the application of the AM-GM inequality in optimization problems.
  • Explore advanced calculus techniques for optimizing rational functions.
  • Learn about the behavior of functions in specific domains, particularly for \( x > 1 \).
  • Investigate other optimization methods, such as Lagrange multipliers and critical point analysis.
USEFUL FOR

Mathematicians, calculus students, and anyone interested in optimization techniques for functions, particularly those involving rational expressions.

juantheron
Messages
243
Reaction score
1
Maximum value of expression $\displaystyle f(x) = \frac{x^4-x^2}{x^6+2x^3-1}\;,$ where $x>1$
 
Physics news on Phys.org
My solution:

If we want to maximize $f(x)=\dfrac{x^4-x^2}{x^6+2x^3-1}=\dfrac{1}{\left(\dfrac{x^6+2x^3-1}{x^4-x^2}\right)}$, this could be done if we are to find the minimum value for the expression $\dfrac{x^6+2x^3-1}{x^4-x^2}$.

Note that

$\begin{align*}\dfrac{x^6+2x^3-1}{x^4-x^2}&=x^2+1+\dfrac{2x^3+x^2-1}{x^4-x^2}\\&=x^2+1+\dfrac{2x^3}{x^2(x^2-1)}+\dfrac{x^2-1}{x^2(x^2-1)}\\&=x^2+1+\dfrac{2x}{x^2-1}+\dfrac{1}{x^2}\\&=\left(x-\dfrac{1}{x}\right)^2+\dfrac{2}{\left(x-\dfrac{1}{x}\right)}+3\\&=\left(x-\dfrac{1}{x}\right)^2+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+3---(*)\end{align*}$

We then apply the AM-GM to the first three terms of the expression (*) and that gives

$\left(x-\dfrac{1}{x}\right)^2+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}\ge 3$

(*Equality occurs when $x^2-x-1=\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0$.)

Therefore, the minimum value for $\dfrac{x^6+2x^3-1}{x^4-x^2}$ is $3+3=6$ and that results in a maximum of

$f(x)=\dfrac{x^4-x^2}{x^6+2x^3-1}=\dfrac{1}{\left(\dfrac{x^6+2x^3-1}{x^4-x^2}\right)}$ as $\dfrac{1}{6}$
.
 
Hi jacks again, :)

I want to apologize for not formulating my solution above in a very good way.:(

I forgot to mention that the term $\dfrac{1}{\left(x-\dfrac{1}{x}\right)}$ is a positive in the given domain where $x>1$, therefore, I could then apply the AM-GM on those terms to look for the minimum value for $\left(x-\dfrac{1}{x}\right)^2+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}+\dfrac{1}{\left(x-\dfrac{1}{x}\right)}$.

Sorry about that.:o
 
Thanks anemone for Nice Solution::

My Solution is Similar To Yours::

Given $$\displaystyle f(x) = \frac{x^4-x^2}{x^6+2x^3-1}\;,$$ Where $$x>1$$

So We can Simplify $$\displaystyle f(x) = \frac{x^4-x^2}{x^6+2x^3-1} = \frac{x^3\cdot \left(x-\frac{1}{x}\right)}{x^3\cdot \left(x^3-\frac{1}{x^3}\right)+2} = \frac{\left(x-\frac{1}{x}\right)}{\left(x^3-\frac{1}{x^3}\right)+2}$$

Now Let $$u = \left(x-\frac{1}{x}\right)>0\;,\left(x^3-\frac{1}{x^3}\right) = \left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)\;,x>1.$$

So $$\displaystyle f(u) = \frac{u}{u^3+3u+2}=\frac{u}{u^3+u+u+u+1+1}\leq \frac{u}{6\sqrt[6]{u^3\cdot u \cdot \cdot u \cdot u\cdot 1\cdot 1}} = \frac{1}{6}$$

Using $$\bf{A.M\geq G.M}$$ and above equality hold when $$\displaystyle u = 1\Rightarrow \left(x-\frac{1}{x}\right) = 1\Rightarrow x= \frac{\sqrt{5}+1}{2}$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K