MHB Optimizing Binomial Coefficients for Maximum Value

AI Thread Summary
The discussion focuses on determining the value of k that maximizes the term A_k in the binomial expansion of (1 + 1/5)^1000, where A_k = (1000 choose k)(1/5)^k. Through analysis, it is concluded that k should satisfy the inequality derived from comparing consecutive terms, leading to the condition 1/(1000-k) > 1/(5k+5). This simplifies to find that k = 166 is the optimal solution for maximizing A_k. The participants express appreciation for the collaborative effort in reaching this conclusion. The thread emphasizes the mathematical reasoning behind optimizing binomial coefficients.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
From the binomial theorem, we have

$\displaystyle \begin{align*}\left(1+\dfrac{1}{5}\right)^{1000}&={1000 \choose 0}\left(\dfrac{1}{5}\right)^{0}+{1000 \choose 1}\left(\dfrac{1}{5}\right)^{1}+{1000 \choose 2}\left(\dfrac{1}{5}\right)^{2}+\cdots+{1000 \choose 1000}\left(\dfrac{1}{5}\right)^{1000}\\&=A_0+A_1+A_2+\cdots+A_{1000} \end{align*}$

where $\displaystyle A_k={1000 \choose k}\left(\dfrac{1}{5}\right)^{k}$.

For which $k$ is $A_k$ the largest?
 
Mathematics news on Phys.org
anemone said:
From the binomial theorem, we have

$\displaystyle \begin{align*}\left(1+\dfrac{1}{5}\right)^{1000}&={1000 \choose 0}\left(\dfrac{1}{5}\right)^{0}+{1000 \choose 1}\left(\dfrac{1}{5}\right)^{1}+{1000 \choose 2}\left(\dfrac{1}{5}\right)^{2}+\cdots+{1000 \choose 1000}\left(\dfrac{1}{5}\right)^{1000}\\&=A_0+A_1+A_2+\cdots+A_{1000} \end{align*}$

where $\displaystyle A_k={1000 \choose k}\left(\dfrac{1}{5}\right)^{k}$.

For which $k$ is $A_k$ the largest?

I looked for k such that $\frac{1000!}{k!(1000-k)!5^k}>\frac{1000!}{(k+1)!(999-k)!5^{k+1}}$.

This simplifies to $\frac{1}{1000-k}>\frac{1}{5k+5}$.

Leading to k=166 if I didn't make any dopey errors.
 
Thanks M R for your participation and your correct solution!(Yes)

A solution proposed by other:

Note that $\displaystyle A_k={1000 \choose k}\left(\dfrac{1}{5}\right)^k=\dfrac{1000!}{5^k(k!)(1000-k)!}$, so to maximize $A_K$ means we must minimize its denominator, and if we let it as $P_k=5^k(k!)(1000-k)!$, for all $k$, we have $P_{k+1}=5^{k+1}((k+1)!)(1000-(k+1))!=5^{k+1}((k+1)!)(999-k)!=P_k\left(\dfrac{5(k+1)}{1000-k}\right)$.

For small values of $k$, $\dfrac{5(k+1)}{1000-k}<1$, so we must have $P-0>P_1>P_2>\cdots$. The minimum value will thus come at the smallest value of $k$ for which $\dfrac{5(k+1)}{1000-k}>1$, so we must have $5(k+1)>1000-k\,\,\rightarrow k=166$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top