mido hoss said:
Sorry I didn’t get you did you that neither row nor column operation or any method would fullfil my need ?
Rows are ok, because it changes only the equations, columns are not ok because it changes variables. (You can do columns but you have to be careful.)
Here is an example:
\begin{align*}
\begin{pmatrix}-1&2&0&3&-4&0\\
-3&6&0&9&-12&0\\
3&0&0&0&0&0\\
0&0&0&-15&0&0\\
2&-4&0&-6&1&0\\
\end{pmatrix}&\cdot \begin{pmatrix}x_1\\x_2\\x_3\\x_4\\x_5\\x_6\end{pmatrix}=\begin{pmatrix}0\\0\\0\\0\\0\\0\end{pmatrix}
\\[6pt]
\begin{pmatrix}
\text{ row 2 new } &= \text{ row 2 old }-3\cdot\text{row 1}\\
\text{ row 5 new } &= \text{ row 5 old }+2\cdot\text{row 1}\\
\end{pmatrix}&\\[6pt]
\begin{pmatrix}-1&2&0&3&-4&0\\
0&0&0&0&0&0\\
0&0&0&137&0&0\\
0&0&0&-15&0&0\\
0&0&0&0&-7&0\\
\end{pmatrix}&\cdot \begin{pmatrix}x_1\\x_2\\x_3\\x_4\\x_5\\x_6\end{pmatrix}=\begin{pmatrix}0\\0\\0\\0\\0\\0\end{pmatrix}
\\[6pt]
\begin{pmatrix}
-x_1+2x_2+3x_4-4x_5&=&0\\
0&=&0\\
137x_4&=&0\\
-15x_4&=&0\\
-7x_5&=&0
\end{pmatrix}&\\[6pt]
\begin{pmatrix}
-x_1+2x_2&=&0\\
x_4&=&0\\
x_4&=&0\\
x_5&=&0
\end{pmatrix}&\\[6pt]
\end{align*}
Thus, the null space is spanned by all vectors of the form ##(2x_2,x_2,x_3,0,0,x_6)## where ##x_2,x_3## and ##x_6## are arbitrary. ##x_1## is determined by ##x_2## because of the first equation.
You can investigate yourself what happens if you do something with the columns. It means manipulating the variables, or you avoid column operations.